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The aim of this paper is to present a general perspective of the different correlation effects appearing
at semiconductor surfaces and interfaces. The unifying theoretical picture is the generalized Hubbard
Hamiltonian. In a first step, we show how such Hamiltonians can be analyzed using both a local
density approach and many-body techniques. This discussion shows how to determine the different
electron–electron interaction parameters appearing in the generalized Hubbard Hamiltonian, from a set
of restricted LDA calculations for the full surface. Then, different surfaces and interfaces are analyzed;
in particular, we consider the Si(111)-(7× 7), -(5× 5) and -(3× 3) reconstructions as well as the Si-rich
SiC(111)-(

√
3 ×
√

3) and -(3 × 3) surfaces. These Si-rich SiC(111) surfaces are shown to behave like
a Mott–Hubbard insulator, while the Si(111) reconstructions are charge transfer systems presenting a
variety of different behaviors; thus, the Si(111)-(7 × 7) is metallic, while the -(5× 5) and the -(3× 3)
are found to be insulating. We have also analyzed the Sn/Ge(111)-(3 × 3) reconstruction, the alkali
metal/GaAs(110) junction and the K/Si(111)-(

√
3 ×
√

3)-B interface. Our discussion shows that the
alkali metal/GaAs and K/Si(111) interfaces present also a Mott–Hubbard metal–insulator transition,
and that the Sn/Ge(111)-(3 × 3) interface is still metallic in spite of nonnegligible many-body effects
appearing in the surface band density of states. We conclude that two-dimensional systems at semi-
conductor surfaces and interfaces present a rich variety of many-body effects that modify substantially
the one-electron picture one gets from LDA calculations.

1. Introduction

Different theoretical and experimental evidences

gathered recently for semiconductor surfaces and in-

terfaces have shown the importance of electron corre-

lation effects in these systems.1–11 The metallization

of very thin metal overlayers deposited on semicon-

ductors was one of the first cases where these ef-

fects were recognized as critical for understanding

the physics of the interface:1 this problem is related

to the formation of metal–semiconductor junctions

in the early stages of the metal deposition on the

semiconductor.12,13 Following this line, the deposi-

tion of Sn or Pb on Ge(111) is also an example where

electron correlation effects have been suggested3 to

play some role regarding, specifically, the forma-

tion of the Sn/Ge(111)-(
√

3 ×
√

3) or Pb/Ge(111)-

(
√

3×
√

3) reconstructions; these systems present for

not very low temperatures a surface phase

transition3,14 of the type
√

3 ×
√

3 → 3 × 3, which

might be coupled to those correlation effects.

On clean surfaces, different semiconductor recon-

structions also show important many-body effects:

the cases SiC(0001), SiC(111)-(3×3) and -(
√

3×
√

3),

and Si(111)-(7 × 7) and -(5 × 5) are specific exam-

ples where different groups4,7–11 have identified cor-

relation effects that modify substantially the one-

electron picture one can obtain from a local density

(LD) calculation.

The aim of this paper is to present a general per-

spective of the different correlation effects appearing

in the cases mentioned above. The unifying theo-

retical picture of this presentation is the generalized

Hubbard Hamiltonian: we shall see how the exam-

ples mentioned above can be described by means of
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the sort of Hamiltonian that includes, basically, lo-

cal and nonlocal Coulomb interactions between the

electrons of the system. In this picture, we shall

discuss how the different examples analyzed in this

paper can be classified into systems presenting corre-

lation effects which are mainly associated with either

local or nonlocal interactions. When these systems

behave like insulators they correspond to what Za-

wasky and collaborators15 have classified as either

Mott–Hubbard or charge transfer insulators.

In Sec. 2 we present a theoretical discussion of

how generalized Hubbard Hamiltonians can be ana-

lyzed within an LD approach and using many-body

techniques. While most of the work in strongly cor-

related electrons has been devoted to idealized mod-

els, our aim is to study the effect of the electron–

electron interaction in the band structure of the

surface or interface between real materials. The LD

approach in terms of localized orbitals discussed in

Subsec. 2.1 proves fundamental in the accurate map-

ping of the band structure into the generalized Hub-

bard Hamiltonian. In particular, it provides a way

of determining the electron–electron interaction pa-

rameters [U and J ; see the Hamiltonian (1) below]

appearing in the generalized Hubbard Hamiltonian

for the surface states we want to analyze, from a set

of LDA calculations for the full surface. Our treat-

ment of the many-body problem introduces dynami-

cal effects associated with the correlation by the use

of a self-energy, and is presented in Subsec. 2.2. No-

tice that various schemes, like the “LDA + U”16 or

the self-interaction correction (SIC) method,17 have

been proposed to include electron–electron interac-

tions in LDA calculations. Although these schemes

lead to significant improvements, they do not capture

the dynamical effects included by the self-energy ap-

proach. The discussion in Sec. 2 is presented as an

introduction to the more specific analysis of differ-

ent semiconductor surfaces and interfaces that will

be discussed in Secs. 3 and 4. Readers not specifi-

cally interested in the theory presented in Sec. 2 can

proceed directly to Secs. 3 and 4.

2. Generalized Hubbard Hamiltonians;
Metal–Insulator Transitions

In this section, we present the basic theoretical

approach that has been used by many different

researchers18 in order to understand the electron

correlation effects associated with an electron gas;

our presentation always keeps in mind the particu-

lar two-dimensional cases appearing at semiconduc-

tor surfaces or interfaces.

Our starting point is the generalized Hubbard

Hamiltonian

Ĥ =
∑
α,σ

Eαn̂ασ +
∑
α6=β,σ

tαβ ĉ
†
ασ ĉβσ

+
∑
α

Uαn̂α↑n̂α↓

+
1

2

∑
α6=β, σσ′

Jαβn̂ασn̂βσ′ , (1)

where Eα is the energy level of the wave function

associated with orbital α; tαβ defines the effective

hopping between orbitals α and β; and Uα and Jαβ
are the on-site (α α) and off-site (α β) Coulomb in-

teractions. We assume that there is only one orbital

per site. In Eq. (1), n̂ασ, ĉ†ασ and ĉβσ are the occupa-

tion number, and creation and anhiliation operators,

respectively.

The Hamiltonian (1) has been used as the basic

approach to analyze many different correlation prob-

lems not limited to the surface or interface cases dis-

cussed in this paper. Let us note that the restricted

Hubbard Hamiltonian is obtained by taking Jαβ = 0

in the Hamiltonian (1); the interest in using this re-

stricted case appears when one considers a half-filled

band — a problem for which, as discussed below, the

general Hamiltonian (1) can be reduced to this limit.

Although most of the work on electron correlation ef-

fects and the metal–insulator transition has focused

on the solution of this restricted Hubbard Hamilto-

nian, many of the surface and interface systems we

will consider below present bands with filling factors

different from one-half. In these cases, the off-site

Coulomb interaction Jαβ included in the generalized

Hubbard Hamiltonian plays a crucial role in driving

the metal–insulator transition.

In Subsec. 2.1 we present the LD solution

of the generalized Hubbard Hamiltonian (1), ob-

tained using the dynamical mean field (DMF)

approximation.19 In this approximation, which can

be considered as the exact solution in the limit

of an infinite coordination number, the effects of

the off-site Coulomb interaction, Jαβ , are treated

in a mean field approximation, and the correlation

effects associated with Uα can be analyzed in a
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local way, neglecting any interference between dif-

ferent sites (say, α and β). The second part of this

section (Subsec. 2.2) is devoted to explaining the self-

energy approach to the calculation of the density of

states. This approach provides a general procedure

for analyzing the metal–insulator transition in sys-

tems described by the Hamiltonian (1). In some spe-

cific cases, easier ways to study the correlated den-

sity of states can be devised; some examples will be

discussed in Sec. 3.

2.1. LD solution of the generalized
Hubbard Hamiltonian in
the DMF limit

Following an LD approach, the total energy, E, of

the system described by the Hamiltonian (1) can be

shown20 to be a function of the orbital occupation

numbers, nασ = 〈n̂ασ〉 (〈〉 indicates the expectation

value on the ground state):

E ≡ E(n1↑, n1↓, . . . , nασ, . . .) = E({nασ}) . (2)

As with standard density functional theory, the

ground state orbital occupation numbers are the set

{nασ}, which minimizes E({nασ}); this minimiza-

tion process is equivalent to the self-consistent solu-

tion of an effective one-electron Hamiltonian, Ĥeff ,

which also depends on these occupation numbers. In

what follows, we show how Ĥeff can be defined, using

the DMF approximation, in terms of the parameters

of the Hamiltonian (1) and the orbital occupation

numbers.

As the starting point, it is useful to split the to-

tal energy into the kinetic, T , and many-body, Emb,

contributions,

E = T ({nασ}) +Emb({nασ}) , (3)

in such a way that, following Kohn and Sham, we

can introduce the following effective Hamiltonian:20

Ĥeff =
∑
α,σ

(Eα + V mb
ασ )n̂ασ

+
∑
α6=β,σ

tαβ ĉ
†
ασ ĉβσ , (4)

where

V mb
ασ =

∂Emb

∂nασ
. (5)

Solving Eqs. (4) and (5) self-consistently we can

calculate the {nασ} of the ground state, and using

Eq. (2) we obtain the total energy of the system.

Obviously, the main problem in this approach is

to determine Emb in Eq. (3) as a function of the or-

bital occupation numbers. Again, it is convenient to

split this term in the so-called Hartree, exchange and

correlation contributions. While it is quite straight-

forward to write down the functional dependence of

the Hartree term, exchange and correlation are more

involved, and the DMF limit will be explicitly used

to get a closed expression in terms of the orbital oc-

cupation numbers.

From Eq. (1), we see that the Hartree contribu-

tion is given by

EH({nασ}) =
∑
α

Uαnα↑nα↓

+
1

2

∑
α6=β, σσ′

Jαβnασnβσ′ , (6)

while the exchange contribution is

Ex({nασ}) = −1

2

∑
α6=β,σ

Jαβnαβσnβασ , (7)

with nαβσ = 〈ĉ†ασ ĉβσ〉. We can make use of the sum

rule20 ∑
β 6=(α)

nαβσnβασ = nασ(1− nασ) (8)

to write

Ex({nασ}) = −1

2

∑
α,σ

Jαnασ(1− nασ) , (9)

which yields the exchange energy as the interaction,

Jα, between nασ and its hole, 1− nασ. In the DMF

approximation, the hole is located in the nearest

neighbors (nn) of the α site, and Jα in Eq. (9) rep-

resents the interaction between nn electrons.

The correlation contribution to the energy, in the

DMF approximation, is a local property that can be

shown20 to depend on nασ as follows:

Ec({nασ}) = −1

2

∑
α,σ

fασ(Uα − Jα)nασ(1− nασ) .

(10)

This equation yields the correlation energy as the

Coulomb interaction between the charge nασ and its
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correlation hole fασ(1 − nασ). This hole is located

inside the α site, and reduces the exchange hole from

1− nασ to (1− fασ)(1− nασ): this is the reason for

having Uα − Jα instead of Uα in Eq. (10). Values

of fασ as a function of nασ are given in Ref. 20 for

different (Uα − Jα)/t values.

Equations (6), (9) and (10) define the many-body

energy,

Emb({nασ}) = EH({nασ}) +Ex({nασ})

+Ec({nασ}) , (11)

and the many-body potential, V mb
ασ , in Eq. (5), as

V mb
ασ =

∂EH

∂nασ
+
∂Ex

∂nασ
+

∂Ec

∂nασ

= Uαnασ̄ +
∑
β 6=(α)

Jαβnβ − Jα
(

1

2
− nασ

)

− fασ(Uα − Jα)

(
1

2
− nασ

)
, (12)

where nβ = nβ↑ + nβ↓, and fασ has been assumed,

for the sake of simplicity, to be practically constant.

Equations (4) and (12) define our effective one-

electron Hamiltonian associated with Eqs. (1). This

is an important result from both the conceptual and

the applied point of view. It makes it possible to

discuss the equivalence of different simplified Hub-

bard Hamiltonians under particular physical condi-

tions, as will be shown below. On the other hand,

it is extremely relevant from the point of view of re-

alistic applications, because it provides a direct link

between the accurate one-electron LDA calculations

for surface or interface problems and the many-body

Hamiltonian (1) we want to use to include correlation

effects.

The starting point for calculating the parameters

of the Hamiltonian (1) is the fitting of the relevant

surface bands in our ground state calculation to the

one-electron Hamiltonian defined in Eq. (4). This

first step provides the hopping parameters, tαβ , and

on-site effective levels, Eα + V mb
ασ , where electron–

electron contributions (Uα, Jαβ) are included with

the ground state occupation numbers. The sole anal-

ysis of the ground state bands is clearly not enough

to determine the individual contributions to the ef-

fective levels, but the analysis of the surface bands

from different “restricted LDA calculations”6 using

Eq. (12) provides a way to calculate Eα, Uα, Jα and

Jαβ . In this approach, the filling factors of the differ-

ent surface bands are varied and the corresponding

occupation numbers, nασ, are changed. LDA self-

consistency for the new restricted case (where the

filling factors are kept fixed) yields, in its turn, new

parameters Eα + V mb
α , related to the new occupa-

tion numbers, {nβσ}. The application of Eq. (12),

with the appropriate Vx and Vc, which defines how

V mb
α depends on {nβσ}, to the different restricted

LDA calculations provides a set of equations that

would allow one, in principle, to calculate Eα, Uα,

Jα and Jαβ . One should note, however, that not all

the parameters, Uα and Jαβ , can be determined by

this procedure. There is always, at least, one pa-

rameter that still remains undetermined by the set

of equations (12). We will usually choose to ob-

tain Jαβ by means of an independent electrostatic

model (see Sec. 3 for details). We must stress that,

in order to accurately complete this program, one

has to introduce the exchange and correlation con-

tributions; otherwise, one would only use the Hartree

potential and the fitting is liable to yield inaccurate

parameters.

The results obtained above for the many-body

potential, V mb
ασ , allow us also to analyze the equiv-

alence of different Hubbard Hamiltonians, depend-

ing on the physical conditions of the problem. Con-

sider, as a first example, the case of a lattice with

equivalent sites and having one electron per site (the

half-filled band case). This is a typical problem

that has been usually analyzed by considering a re-

stricted Hamiltonian with an effective on-site inter-

action, U eff . How to establish contact between the

two models? In this particular case, we look for solu-

tions such that nα↑+nα↓ = 1, namely with electrons

fluctuating at each site between spins up and down

(in the insulating phase, electrons are localized one

per site, with their spins up or down). For the general

Hamiltonian, the local potential, V mb
ασ , would change

with nασ as follows:

δV mb
ασ = [Uα − Jα − fασ(Uα − Jα)]δnασ̄ (13)

(since δnασ = −δnασ̄), while for the restricted

Hamiltonian,

δV mb
ασ = (U eff

α − fασU eff
α )δnασ̄ . (14)

A comparison of Eqs. (13) and (14) yields

U eff
α = Uα − Jα , (15)
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defining the effective intrasite interaction as the dif-

ference between Uα and the nn Coulomb interaction,

Jα.

In the second example, we consider also a lat-

tice with all the sites equivalent but having only one

electron every two sites. This is the so called one-

fourth filling band case. For this particular case, the

metal–insulator transition cannot usually be driven

by the on-site Coulomb interaction U ; in particular,

this phase transition is associated with electron fluc-

tuations between two sites (in the insulating phase,

there is one electron in each occupied site, and half

of the lattice sites are empty). This problem has usu-

ally been analyzed by means of a generalized Hub-

bard Hamiltonian reading

Ĥ =
∑
α,σ

Eαn̂ασ +
∑
α6=β, σ

tαβ ĉ
†
ασ ĉβσ

+ U eff
∑
α

n̂α↑n̂α↓ +
1

2
Jeff

∑
nn

n̂αn̂β , (16)

where only the nn interaction, Jeff , is introduced.

This effective off-site interaction is expected to drive

the metal–insulator transition. In order to estab-

lish the equivalence between Hamiltonians (1) and

(16) (for the one-fourth filling band case), we note

that one is only interested in fluctuations such that

n1 + n2 = 1, where n1 and n2 are the charges

(summed over the spin) of the inequivalent sites 1

and 2. In the complete Hubbard Hamiltonian,

δV mb
1↑ = [U − J − f1↑(U − J)]δn1↓

+
∑
β 6=1

J1βδnβ

− Jδn2 − f1↑(U − J)δn2 , (17)

where use of δn1 + δn2 = 0 has been made, and J

represents the nn Coulomb interaction. A similar

equation for site 2 can be written.

For the Hamiltonian (16), the many-body poten-

tial, V mb
1↑ , is related to changes in the charges by the

equation

δV mb
1↑ = [U eff − Jeff − f1↑(U

eff − Jeff)]δn1↓

+
∑
nn

Jeffδnβ − Jeffδn2

− f1↑(U
eff − Jeff)δn2 . (18)

Comparison of Eqs. (17) and (18) yields the fol-

lowing equivalence between the Hamiltonians (1) and

(16):

U − J = U eff − Jeff , (19)

(∑
β 6=1

J1β

)Madel.

− J =

(∑
nn

Jeff

)
− Jeff . (20)

In this equation (
∑
β 6=1 J1β)Madel. is the Madelung

potential, (1+γ)J , created by the charges n2 = 1 and

n1 = −1 on the lattice sites 2 and 1, respectively. For

a lattice coordination Z, the second equation yields

γJ = (Z − 1)Jeff . (21)

Equations (19) and (21) define the effective pa-

rameters of the Hamiltonian (16) in terms of the

quantities appearing in the Hamiltonian (1). No-

tice that in this equivalence, Jeff is defined by the

Madelung potential, the lattice coordination Z and

the nn interaction, J . On the other hand, the new

value of U is defined by Eq. (19), which tells us that

the difference between U and the nn interaction, J ,

is the same in the two Hamiltonians.

2.2. Density of states; self-energies
and the metal–insulator transition

The LD solution presented above gives the orbital oc-

cupancies, {nασ}, and the total energy of the system,

but does not provide a good solution for its density

of states. Only for systems having small correlation

effects can we expect the effective Hamiltonian (4)

to adequately yield their density of states. In partic-

ular, the metal–insulator transition of Hamiltonian

(1) has to be analyzed introducing other techniques.

A good solution to this problem is provided by

the use of many-body techniques.21,22 This approach

can be related to the LD solution of Subsec. 2.1

in the following way. First of all, notice that the

many-body potential, V mb
ασ [Eq. (12)], includes three

contributions — the Hartree, the exchange and the

correlation terms. Within the DMF approximation,

the Hartree and the exchange potentials are well

described by the LD contributions; then, in order

to have a good description of the density of states,

we only have to introduce dynamical effects asso-

ciated with correlation. This amounts to replacing
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V c({nασ}) by an appropriate self-energy, Σc({nασ});
the knowledge of this quantity allows us to define the

local density of states, ρασ(w), as follows:

ρασ(w) = − 1

π
Im{Gαα,σ(w)} ,

nασ =

∫ EF

−∞
dwρασ(w) ,

(22)

where Gαα,σ(w) is the (αα, σ) component of the

Green function defined by the matrix

G(w) = [wI−H]−1 (23)

where

Hαα,σ = Eα + V Hασ + V xασ + Σcασ(w) (24)

and

Hαβ,σ = tαβ . (25)

The main problem in this approach is to calcu-

late Σcασ(w). Many different approximations have

been proposed. In the simplest approach, us-

ing a second order perturbation theory, Σc
ασ(w) is

approximated23 by

Σc(2)
ασ (w) = U2

∫ ∞
−∞

dε1dε2dε3
ρ̃ασ(ε1)ρ̃ασ̄(ε2)ρ̃ασ̄(ε3)

w + ε2 − ε1 − ε3 + i0+

× [f1f3(1− f2)− (1− f1)(1− f3)f2] , (26)

where fi = f(εi) denotes the Fermi distribution and

ρ̃ασ(εi) is the local density of states as calculated

from the one-electron LD approximation discussed

above.

A much better approximation is obtained by re-

alizing that (i) Σ
c(2)
ασ (w) goes to

U2 nασ̄(1− nασ̄)

w − (Eα + V Hα + V xα + V cα)
(27)

for w →∞, nασ̄ being the charges calculated in LD,

and (ii) the atomic limit of Σcασ(w),

Σc,at
ασ (w) =

U2nασ̄(1− nασ̄)

w − (Eα + V Hα + V xα + V cα)− (1− 2nασ̄)U
,

(28)

also goes to the same limit for U → 0. This suggests

to define the following interpolative self-energy:24

Σcασ(w) =
Σ
c(2)
ασ (w)

1− aΣ
c(2)
ασ (w)

, (29)

with

a =
(1− 2nασ̄)U

U2nασ̄(1− nασ̄)
. (30)

It is easy to check that in the limit U/t → 0,

aΣ
c(2)
ασ goes to zero and Σcασ goes to Σ

c(2)
ασ . On the

other hand, for U/t→∞, Σ
c(2)
ασ goes to

U2 nασ̄(1− nασ̄)

w − (Eα + V Hα + V xα + V cα)
(31)

and Eq. (29) recovers the atomic limit. Accordingly,

the self-energy defined by Eq. (29) yields both the

small and the high U limit, and has been checked in

different calculations to be a fair approximation to

Σcασ.25

A final step in this evolution was given by Rozen-

berg et al.,26 who proposed calculating Σ
c(2)
ασ by using

for ρ̃ασ(w) the local density of states obtained by re-

placing V cβσ with Σcβσ(w) in all sites save the same

place α, where we want to calculate ρ̃ασ(w). In this

way, the zeroth order density of states, used to calcu-

late Σ
c(2)
ασ and Σcασ, includes all the correlation effects

associated with other sites. We stress that defining

ρ̃ασ(w) by replacing V cβσ with Σcβσ(w) in all sites,

including α, has been checked to yield much worse

results than the previous ansatz.27 Notice also that in

the proposal of Rozenberg et al.,26 Σcβσ(w) has to be

calculated self-consistently, because ρ̃ασ(w), defin-

ing Σ
c(2)
ασ , depends itself on the self-energy. These

authors have shown that this procedure yields for

a Hubbard Hamiltonian solutions, within the DMF

approximation, that provide good estimates for the

metal–insulator transition.

As an example of the results given by this ap-

proach, Fig. 1 shows the density of states cal-

culated for a half-filled rectangular lattice,28 us-

ing a restricted Hubbard Hamiltonian (Jαβ =

0). Different curves correspond to different val-

ues of U eff/W (W is the bandwidth). These re-

sults show the typical evolution of the density of

states of this case when U eff/W varies from 0 to

∞. Initially (U eff/W → 0), the system shows a

free electron density of states; when U eff/W in-

creases, two peaks associated with E0 and E0 +

U eff , the ionization and the affinity levels of the

single site, start to evolve and a Kondo-like peak
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Fig. 1. Local density of states for a restricted
Hubbard Hamiltonian of a two-dimensional rectangular
lattice. Different curves correspond to different values of
Ueff/W (see text for details).

appears at the Fermi energy. Eventually, the insu-

lating phase is found (in Fig. 1 for U eff/W > 1.6),

and the density of states shows two peaks at E0 and

E0 +U eff , each having a width of ∼W/2. Then, the

metal–insulator transition appears for U eff/W ' 1.6,

with U eff defined by U eff = Uα − Jα, as discussed

above.

The case of a band filling different from one-half

has to be analyzed using either the generalized Hub-

bard Hamiltonian (1) or another one, such as the

Hamiltonian (16), which has been shown to be equiv-

alent to it. In order to keep the discussion simple, we

consider only the quarter-filling band case, which is

well described by the Hamiltonian (16), and instead

of considering its general solution, we discuss the

limit U eff/W � 1, and analyze its possible metal–

insulator transition as a function of Jeff .22

To start, consider the exchange and correlation

energies in the limit U eff/W → ∞. From Eqs. (9)

and (10) we see that for fασ → 1, as corresponds to

the case U eff/W →∞,

Ex +Ec = −1

2

∑
ασ

U effnασ(1− nασ)

(fασ = 1) ; (32)

in this case nασ + nασ̄ is either 1 or 0 and one

can check that this energy cancels out exactly the

Hartree energy associated with the intra-atomic

Coulomb interaction. This shows that the total en-

ergy of the system in this limit, U eff → ∞, is given

by

E({nασ}) = T ({nασ}) +EHinter({nασ}) , (33)

where EHinter({nασ}) is the Hartree energy associ-

ated with the interaction between charges in different

sites.

The metal–insulator transition can be analyzed

by comparing the energies of the two phases: in the

metallic phase, the total energy is given only by the

kinetic term, a contribution that, per electron, is well

approximated by −W/4 (W being the bandwidth);

in the insulating phase, the intersite Coulomb inter-

action per electron is due to the rearrangement of

the mean charge, −ZJeff/4, with Z the lattice co-

ordination. Comparison between these values show

that the metal–insulator transition should appear for

Jeff 'W/Z.

Detailed calculations using the self-energy ap-

proach confirm this picture.22 Figure 2 shows a

scheme of the local density of states found for this

problem, as a function of Jeff/W : (i) for Jeff/W �
1/Z, we have the metallic phase, with local densities

of states showing aroundEF , because of the high U eff

value, bands having a weight of only three-quarters

of the electron; (ii) for Jeff/W � 1/Z, we recover

the insulating phase with a broken symmetry, the

site a allocating one electron and site b being empty;

(iii) at intermediate values of Jeff (Jeff/W ' 1/Z),

we find a Kondo-like peak at the Fermi energy, and

a density of states at sites a and b resembling the

insulating phase.

Furthermore, it is interesting to note that these

results, for U/t → ∞ and a quarter-filling, can also

be recovered using a spinless Hamiltonian. In this

limit, U/t → ∞, only one electron can fill a site:

this suggests using a spinless Hamiltonian, whose so-

lution automatically includes exchange effects that

forbid two electrons to occupy simultaneously a sin-

gle site. This Hamiltonian reads

Ĥspinless =
∑
α

Eαn̂α +
∑
α6=β

tαβ ĉ
†
αĉβ

+
1

2

∑
α6=β

Jαβn̂αn̂β . (34)

The use of a mean field approximation for the

Coulomb term Jαβn̂αn̂β allows us to analyze in a
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Fig. 2. Scheme showing the local density of states on the different sites (a) and (b) of a two-dimensional Hubbard
Hamiltonian, for Ueff � W (see text), and a quarter band filling. (i) For Jeff/W � 1/Z, one finds a metallic phase;
the weight of this density of states around EF is 3/4 (per spin). (ii) For Jeff/W ∼ 1/Z, a Kondo-like peak appears
at the Fermi energy; moreover, sites (a) and (b) have a different density of states, resembling the insulator phase.
(iii) For Jeff/W � 1/Z, the insulating phase appears with an empty density of states in site (b), and a half-filled
density of states in site (a).

simple way the metal–insulator transition associated

with Jαβ in this spinless Hamiltonian. In particu-

lar, the condition found above, Jeff ' W/Z, can be

retrieved from this mean field solution.

A word of caution is in order here. The point to

realize is that the Hamiltonian (34) yields a total lo-

cal DOS of one electron per site (spin is not included

in that Hamiltonian); although this provides a rea-

sonable solution for the occupied part of the spec-

trum, the empty part is not well represented by that

DOS. The reason is that in the empty sites we can

inject one electron with spin up or down: this sug-

gests that, in the solution to the Hamiltonian (34),

the empty DOS should be multiplied by 2. Then,



Many-Body Effects and the Metal–Insulator Transition . . . 419

the DOS calculated in this way yields a reasonable

description of the results shown in Fig. 2.

3. Surfaces

3.1. Si(111)-(7× 7), -(5× 5) and
-(3× 3) reconstructions

The Si(111)-(7 × 7) surface29 has probably been

the most extensively studied semiconductor sur-

face. This and other similar (2n + 1) × (2n + 1)

reconstructions31 are currently accepted to follow

the dimer–adatom–stacking fault (DAS) model.32,42

Figures 3 and 4 show the geometries of the 5 × 5

and 7 × 7 respectively. In this section we present

a theoretical analysis of the electron correlation ef-

fects associated with the surface bands appearing in

those three different reconstructions. Firstly, we dis-

cuss the global electronic properties of these surfaces

using LD calculations. In particular, we determine

the filling factors of the relevant bands and the pa-

rameters of the corresponding generalized Hubbard

Hamiltonian for the different reconstructions. Then,

we proceed to analyze the properties of the 2D elec-

tron gas localized in each surface.

Fig. 3. Unit cell of the Si(111)-(5 × 5) reconstruction:
top view and side view. Surface atoms with dangling
bonds are marked with black circles: the corner hole (the
atom at the corner of the unit cell), the two rest atoms
(labeled R), and the six adatoms, protruding from the
surface.

Fig. 4. Unit cell of the Si(111)-(7 × 7) reconstruction:
top view and side view. In the top view, the adatoms are
represented by the largest black dots and the rest atoms
by the second-largest black dots. The corner hole atom
is the one at the corner of the unit cell.

3.1.1. Local density calculations; surface
bands and Hubbard Hamiltonian

We start our study with the Si(111)-(7 × 7) sur-

face. Figure 5 shows the LDA surface bands cor-

responding to this reconstruction. These bands, and

the relaxed ionic geometry of minimum energy, have

been calculated using a self-consistent local orbital

method.33 We have checked in the easier-to-handle

Si(111)-(5×5) reconstruction that this method yields

results similar to the ones obtained using standard

plane wave LDA calculations.34 The surface bands

of the Si(111)-(7 × 7) reconstruction show a bunch

of 12 bands located around the Fermi energy, Ef ,

an independent band ≈ 0.55 eV below Ef and six

surface bands ≈0.8 eV below Ef . These bands are

related to the different dangling bonds of the 7 × 7

surface; in particular, the six bands located ≈0.8 eV

below Ef are associated with the six rest atoms (see

Fig. 4), the single band with the corner hole, and the

12 bands around Ef with the 12 adatoms.35,36 Note

that the position of the corner hole band in all the

DAS reconstructions is very much dependent on al-

lowing the corner atom to relax towards the vacuum

side: a calculation with a small number of layers in

the surface slab, where the neighbors of the corner

hole have to be kept fixed, notably restricts that re-

laxation and yields a band much closer to the ones

associated with the adatoms.37
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(a)

(b)

Fig. 5. (a) LDA surface bands corresponding to the
Si(111)-(7 × 7) reconstruction. The 12 bands around
EF are essentially derived from the 12 adatom dangling
bonds, the band ∼0.55 eV below EF is related to the cor-
ner hole atom dangling bond, and the 6 bands ∼0.8 eV
below EF are associated with the 6 rest atom dangling
bonds. The energy zero is the top of the valence band.
(b) Two-dimensional Brillouin zone showing the direc-
tions Γ–Q, Q–P and P–Γ.

It is interesting to note that the Fermi level is lo-

cated in the middle of the adatom surface bands, in

such a way that we find, per unit cell, 12 electrons

filling the rest atom bands, 2 electrons in the corner

hole band, and 5 electrons only in the adatom dan-

gling bonds. These 19 electrons correspond to the

number of dangling bonds associated with the rest

Fig. 6. LDA surface bands corresponding to the Si(111)-
(5× 5) reconstruction. The six bands around EF are re-
lated to the six adatom dangling bonds, and the three
bands ∼0.8 eV below EF are associated with the corner
hole atom and the two rest atoms dangling bonds. The
energy zero is the top of the valence band. The directions
Γ–Q, Q–P and P–Γ of the two-dimensional Brillouin zone
are shown in Fig. 5(b).

atoms (6), corner hole (1) and adatoms (12). Our re-

sults show that the surface rehybridization provided

by the DAS model pushes down the rest atom and

corner hole dangling bonds, filling completely these

states. As a consequence, the 12 adatom dangling

bonds in this reconstruction are partially filled by

5 electrons. These partially occupied adatom bands

define the 2D electron gas, whose correlation effects

we shall discuss below.

A similar analysis can be performed for the

Si(111)-(5×5) reconstruction. In this case we have 9

dangling bonds per unit cell: 2 rest atoms, a corner

hole and 6 adatom dangling bonds. Figure 6 shows

its LDA surface bands,10 where we find a bunch of

6 bands around Ef associated with the adatom dan-

gling bonds, one band located around 0.8 eV below

Ef associated with the corner hole, and two bands

located around 0.7–0.8 eV below Ef associated with

the rest atoms.38 As in the 7 × 7 case, the Fermi

level is in the middle of the adatom surface bands

and defines the following filling numbers for the dif-

ferent dangling bonds: 2 electrons per unit cell fill the

corner hole surface band, 4 electrons the rest atom

bands, and 3 electrons the 6 adatom bands. Simi-

larly to the 7× 7 reconstruction, the partially occu-

pied adatom bands define the system where correla-

tion effects can be important, but in this case with a
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different occupancy (6 dangling bond bands filled by

3 electrons, as opposed to the 12 bands occupied by

5 electrons found for the 7× 7). These differences in

the filling factor will have important consequences for

the determination of the metallic or semiconducting

character of these reconstructions.

In order to analyze correlation effects in the sur-

face bands calculated above, we have to define in

a first step the generalized Hubbard Hamiltonian

which we associate with that band structure. Fol-

lowing the discussion presented in Sec. 2, we start

with the effective Hamiltonian (4) and look for the

parameters Eα+V mb
α and tαβ, which yield a good fit-

ting to the LDA bands. The surface symmetry sim-

plifies the procedure, as some of the effective energy

levels and hopping parameters associated with the

different adatoms are equivalent. Figure 7 shows a

top view of the unit cell of the different Si(111) DAS

reconstructions, where the black dots highlight the

position of the adatoms whose dangling bonds define

the 2D electron gas presenting important correlation

effects (12 adatoms for the 7× 7, and 6 adatoms for

the 5× 5 reconstruction).

The fitting to the LDA bands reveals that essen-

tially only two hopping parameters, T and s (see

Fig. 7), are needed to reproduce the adatom sur-

face bands. The values of these hopping parameters

are:

Si(111)-(7× 7) : T ≈ −76 meV; s ≈ 25 meV ;

Si(111)-(5× 5) : T ≈ −70 meV; s ≈ 21 meV .

The application of Eq. (12) to several “restricted”

LDA calculations with different filling factors for the

adatom bands provides a set of equations that can

be used to calculate Eα, Uα and Jαβ , as discussed

in Sec. 2. As already pointed out, there is always

at least one parameter that still remains undeter-

mined by the set of equations (12). In the case of

the DAS reconstructions, we have chosen to obtain

Jαβ by means of an electrostatic model that approx-

imates the adatom dangling bond charges by a point

charge located ≈1.2 Å above a semi-infinite medium

(with the bulk dielectric constant of Si, 11.9) simulat-

ing the Si crystal. Then restricted LDA calculations

are used to calculate Uα, which appears to be almost

constant for the different dangling bonds.

From these calculations we obtain (see Ref. 9 for

details of the procedure) the following parameters for

(a)

(b)

(c)

Fig. 7. Schematic representation of the adatom geom-
etry and interactions: (a) Si(111)-(3 × 3), (b) Si(111)-
(5× 5) and (c) Si(111)-(7× 7). The thick lines connect-
ing adatoms represent the large hopping interactions, T ,
and the thin lines interactions s (for clarity, only a few
s interactions are shown). The unit cell border is also
shown.

the 7× 7 2D Hamiltonian [groups of atoms (1, 2, 3),

(4, 5, 6), (7, 8, 9) and (10, 11, 12) in Fig. 7, which

are equivalent by symmetry, are called r1, r2, d1 and
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d2, respectively]:

Ed1 −Ed2 = −42 meV ;

Er1 − Er2 = −33 meV ;

Ed −Er = 260 meV ;

U = 1.1 eV ;

where Ed = (Ed1 +Ed2)/2 and Er = (Er1 +Er2)/2.

From our electrostatic model J ranges from 386 meV

for the nn interaction to zero.

The 5× 5 reconstruction is analyzed in a similar

way,10 yielding the following parameters: Ef −Eu =

−108 meV (Ef and Eu are the two levels associated

with the atoms of the faulted and unfaulted sides of

the unit cell), U = 1.5 eV, and values of J as in the

7× 7 case.

3.1.2. Correlation effects,
metal–insulator transition

We turn our attention to analyzing the electronic

properties of the generalized Hubbard Hamiltonian

[Eq. (1)] defined by the parameters given above.

3.1.2.1. Si(111)-(7 × 7)

Although we could apply to this case the general

analysis presented in Sec. 2, we have found it more

convenient to use a different approach that appears

to be well suited to the particular Hamiltonian of

this surface.9 The crucial point in solving this case is

to realize that the hopping integral t is substantially

larger than s (see Fig. 7). This allows us to take

s = 0 in the first step, and to include it later in the

solution of that simplified Hamiltonian.

For s = 0, the structures having a hexagonal

ring or a dimer geometry (Fig. 7) decouple from each

other, and the system can be analyzed exactly. The

solution of this Hamiltonian shows that the ground

state corresponds to a configuration for which three

electrons are localized in the hexagonal rings and the

other two in the dimers. Specifying different config-

urations as |NR, N1, N2, N3〉, where NR and Ni are

the number of electrons in the ring and the different

dimers (see Fig. 7), the ground state is |3, 1, 1, 0〉.
The next most stable configuration corresponds to

|2, 1, 1, 1〉 (its energy being 95 meV) and |4, 1, 0, 0〉
(with 125 meV). This shows that the system has the

Fig. 8. Local density of states for the hexagonal ring
and the dimers of the Si(111)-(7 × 7) surface, for s = 0
and s 6= 0. This density of states has been obtained using
a spinless Hamiltonian and, therefore, the empty states
should have twice the weight shown in the figure (see
text).

following neutral excitations:

|3, 1, 1, 0〉 → |2, 1, 1, 1〉 ,

|3, 1, 1, 0〉 → |4, 1, 0, 0〉 ,

corresponding to exciting one electron from the

hexagonal ring to the dimer (95 meV), and one elec-

tron from a dimer to the hexagonal ring (125 meV),

respectively. This solution also shows a threefold de-

generacy for the ground state, corresponding to the

states

|3, 1, 1, 0〉 ; |3, 1, 0, 1〉 ; |3, 0, 1, 1〉 .

The main effect of a finite hopping s is to connect

the threefold degenerate configurations. Notice that

this corresponds to having three electrons frozen in

the hexagonal ring structures, allowing the other two

electrons to jump between dimers. This effect is

going to create a metallic surface band. Figure 8

shows the local density of states (LDOS) for the ring

and the dimers, as obtained from this solution: for

s = 0 we obtain for the rings the LDOS of an iso-

lated hexagonal ring filled with three electrons; for

the dimers and s = 0, the ground state is defined

by three sites (one site per dimer) filled by two elec-

trons. Including the effect of s broadens the LDOS of

the dimers and creates the metallic band, ≈100 meV

width, located around EF . In the case of the rings,

as the electronic structure appearing around EF is
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practically decoupled from the dimer band, one can

expect, in a first approximation, no major changes in

the electronic structure when taking s 6= 0 except for

a broadening of the peaks. There is, however, an in-

teresting effect due to the charge fluctuations of the

last occupied and first unoccupied state on the rings

and the metallic DOS around EF ,9 which leads to

the appearance of a narrow Kondo-like peak (a few

meV in width) at EF (see Fig. 8).

It is worth commenting that the correlation ef-

fects of the metallic band associated with the two

electrons filling three dimers have been analyzed

approximately via an effective spinless Hamiltonian

given by

ĤD =
∑
i

Edn̂i+
∑
nn

s′d̂+
i d̂i+

1

2
JD

∑
nn

n̂in̂j , (35)

where s′ = s/2 = 12 meV defines the hopping in-

tegral between nn dimers and JD = 80 meV their

Coulomb interaction.

In this Hamiltonian, the on-site Coulomb interac-

tion has been assumed to be infinity, and a possible

metal–insulator transition might be driven by JD.

For JD/s′ > 12, electrons get frozen on the lattice

sites, and the system behaves as insulating. We find,

however, that JD/s′ ≈ 6, and expect the 7 × 7 re-

construction to be metallic, with the LDOS shown

in Fig. 7.

Note that the total density of filled states for the

rings and the dimers is 3 and 2, respectively, while

for the empty states we find, close to Ef , six states

from the rings and two from the dimers (instead of

three and one) due to the spin degeneracy (see the

discussion on the spinless Hamiltonian at the end of

Sec. 2).

We complete this section by mentioning that

these results seem to be in reasonable agreement9

with the experimental evidence provided by

photoemission,39 STM40 and EELS.5 For instance,

STM conductances show a smaller occupied DOS for

the dimer atoms than for the ring adatoms. Also,

photoemission shows a peak that we associate with

the DOS of the rings.9

3.1.2.2. Si(111)-(5 × 5)

This surface can also be analyzed using arguments

similar to the ones presented above.10 For the cor-

responding generalized Hubbard Hamiltonian, t is

Fig. 9. LDA surface bands (solid lines) and correlated
surface bands (dashed lines) around EF for the Si(111)-
(5 × 5) surface. The correlated surface bands below EF
are simply degenerate and each band contains only one
electron per unit cell; above EF each correlated surface
band presents a total weight of two electrons per unit cell.
The directions Γ–Q, Q–P and P–Γ of the two-dimensional
Brillouin zone are shown in Fig. 5(b).

also much larger than s and we analyze correlation

effects taking s = 0, in a first step. It is interest-

ing to note that, in this limit, the system decouples

only in hexagonal rings, each having three electrons,

very much like in the 7×7 reconstruction. These iso-

lated hexagonal rings can be analyzed solving exactly

their finite Hamiltonian: their DOS shows, around

EF , three electrons and six holes, the same as for

the results shown in Fig. 8 for the 7 × 7 [case (a):

rings and s = 0]. In a further step, s is taken differ-

ent from zero and the surface bands are calculated

perturbatively. Figure 9 compares these correlated

surface bands with the LDA ones.37,10 Although the

two calculations are similar (with a larger energy gap

between the three lower and three higher bands in

the correlated case), the main difference appears in

the number of electrons associated with each band:

in the correlated case, and due to the large U ap-

pearing in the generalized Hubbard Hamiltonian, the

new bands below EF in Fig. 9 are simply degener-

ate; this is the reason why the Fermi level is now

located in an energy gap, and the system appears as

semiconducting.41

It is also interesting to look at this problem as

the solution of the generalized Hubbard Hamilto-

nian [Eq. (1)], where all the sites are practically

equivalent (neglecting the energy difference between

the faulted/unfaulted sides of the unit cell), and
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the number of electrons is one every two sites, cor-

responding to a quarter-filling band. As commented

in Sec. 2, in this system the metal–insulator transi-

tion could not be driven only by U ; in our particular

case, U is very large (larger than 1 eV) and, practi-

cally, we can assume it to be infinity. In spite of it,

electrons can propagate along the crystal jumping to

empty sites unless the off-site Coulomb interaction

or the band structure conspires to prevent it.

In order to understand why the 5 × 5 is semi-

conducting, we can think of this 2D system (for U

very large) as a spinless Hamiltonian. In this ap-

proximation, the electronic bands would appear as

the LDA ones but only with a single electron oc-

cupancy. This explains the similarity between the

LDA and our correlated bands; at the same time, it

shows that our more detailed solution includes effects

associated with the intersite interactions, Jαβ , that

enhance the energy gap between the empty and the

occupied bands. Thus, we conclude that the semi-

conducting behavior of the Si(5 × 5) reconstruction

is due to both band structure and intersite Coulomb

interaction effects.

3.1.2.3. Si(111)-(3 × 3)

Although this reconstruction has not yet been ana-

lyzed explicitly, we can deduce some of its general

electronic properties using the results from the pre-

vious DAS reconstructions. The similarities of this

case to the 7×7 and the 5×5 surfaces suggest that a

Hamiltonian with parameters obtained by averaging

the two other cases would be reliable for the purpose

of our study. The surface unit cell of the 3×3 recon-

struction has only two adatoms and a corner hole

atom (see Fig. 7). From the previous calculations

one can expect to have a surface band — associated

with the corner hole — located around 0.8 eV below

Ef ; then the 2D electron gas is defined by the two

adatoms dangling bonds filled only by one electron

(quarter-filling band case). Averaging the results for

the 7× 7 and the 5× 5 yields the parameters

Ef −Eu = −75 meV ,

U = 1.2 eV ,

t = −70 meV ,

and the same values for J as in the 7 × 7 and the

5 × 5 reconstructions. We have checked that small

Fig. 10. Solid lines: surface bands around EF obtained
using an LD solution for the generalized Hubbard Hamil-
tonian for the Si(111)-(3 × 3) reconstruction. Dashed
lines: correlated surface bands. Below EF , each corre-
lated surface band accommodates only one electron per
unit cell, while above EF each correlated surface band
presents a total weight of two electrons per unit cell.
The directions Γ–Q, Q–P and P–Γ of the two-dimensional
Brillouin zone are shown in Fig. 5(b).

changes of these parameters do not introduce sub-

stantial modifications in our conclusions.9

Figure 10 shows the bands calculated using an

LD solution for the generalized Hubbard Hamilto-

nian. In this case, there is one electron per unit cell

and the Fermi level is located in the middle of the

lower band.

We analyze many-body effects assuming U very

large, and introducing a spinless Hamiltonian with

the parameters given above. Figure 10 also shows

the bands for this Hamiltonian (dotted lines). Here,

each band is occupied by a single electron and the

Fermi energy appears in the energy gap yielding a

semiconducting behavior for this reconstruction (as

commented above, a more appropriate solution al-

lows for a double occupancy of the empty band).

A word of caution is in order here, because this

discussion depends very much on having assumed

that one has only first neighbors interactions in the

lattice. Including second (and further) neighbors in-

teractions may modify the previous conclusion about

the semiconducting behavior of this surface, because

these interactions may introduce some overlap be-

tween the bands shown in Fig. 10. However, it should

be kept in mind that the semiconducting behavior

of this surface is mainly due to the difference in
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energy between the dangling bonds associated with

the faulted and the unfaulted sides of the 3×3 recon-

struction. A definitive conclusion on the behavior of

this reconstruction needs a full calculation.

3.2. Si-rich SiC(111)-(
√

3×
√

3)
and -(3× 3) reconstructions

SiC(111) surfaces, associated with either

SiC(0001) or β-SiC crystals, present very similar

reconstructions.43 We shall discuss in this subsection,

embodying all these different cases, the SiC(111)

surfaces and the correlation effects that have been

associated with the Si-rich
√

3 ×
√

3 and 3 × 3

reconstructions.

Figure 11 shows the surface geometry of the√
3 ×
√

3 case. Si–C bilayers define the bulk, and

the Si adlayer forming the
√

3×
√

3 reconstruction is

shown in the top and side views. Different theoreti-

cal and experimental groups43–45 have identified the

Si adsorption site as a T4 position, on a threefold-

coordinated site on top of the C atoms of the first

bilayer.

It is interesting to note that each Si in the new

adlayer forms three bonds with the Si atoms under-

neath. With this
√

3×
√

3 structure, all the Si atoms

of the last Si–C bilayer form four bonds with neigh-

boring atoms, and the unsaturated dangling bonds

of this reconstruction are associated only with the

adlayer Si atoms.

Figure 12 shows the surface geometry of the

3× 3 reconstruction as recently discovered by Starke

et al.46 This is a much more complicated structure,

with the Si atoms of the last bilayer presenting a lat-

eral relaxation. On top of this relaxed surface, there

appears a Si adatom cluster of four atoms per unit

cell, with three of them bonded to the relaxed Si sur-

face and with the topmost one bonded to these three

lower atoms of the cluster. It is important to note

that with this structure, all the atoms (except the

Fig. 11. Surface geometry of the SiC(111)-(
√

3×
√

3) reconstruction. (a) Top view; (b) side view.

Fig. 12. The SiC(111)-(3 × 3) structure. (a) Lateral relaxation within the Si adlayer and the trimer supporting the
adatom; (b) ball-and-stick model of the Si relaxation; (c) 3D view of the final structure.46 Only the topmost Si atom
has an unsaturated dangling bond (after Ref. 46).
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Fig. 13. Surface band structure of the Si-rich SiC(111)-
(
√

3 ×
√

3) (after Ref. 43). The surface band associated
with the half-occupied dangling bond of this reconstruc-
tion is located around 1.8 eV above the valence band
top (E = 0). In this surface, Ueff/W ' 5, and the sur-
face band would be split into two bands located around
±Ueff/2 w.r.t. the initial Fermi level, located in the mid-
dle of the surface band.

topmost one) present a fourfold coordination with

their bonds perfectly saturated. This shows that, in

this geometry, there is only a nonsaturated dangling

bond associated with the Si topmost surface atom.

3.2.1. Local density calculations; surface
bands and Hubbard Hamiltonian

Different groups have analyzed, using an LD approx-

imation, the electronic properties of the SiC(111)-

(
√

3×
√

3) and -(3× 3) surfaces.7,43,44,8

Figure 13 shows the surface band structure of the

Si-rich SiC(111)-(
√

3×
√

3) reconstruction as calcu-

lated by Pollman and collaborators.43 The important

point, regarding our discussion of correlated surface

bands, is that the Fermi level is in the middle of the

surface band associated with the Si dangling bonds.

This band is half-occupied, as corresponds to the

electron that fills the dangling bonds.

Notice that the surface band is very narrow, with

a width of only ≈0.3 eV, and that a restricted LDA

Fig. 14. Surface band structure of the Si-rich SiC(111)-
(3× 3) surface (after Ref. 46). The half-occupied surface
band is located around 1.2 eV above the valence band
top (E = 0). In this case, Ueff/W ' 10, and the sur-
face band would be split into two bands located around
(±Ueff/2) w.r.t. the initial Fermi energy.

calculation7 yields U eff ≈ 1.5 eV. Correlation effects

in this band can be analyzed using a restricted Hub-

bard Hamiltonian, where all the Coulomb interac-

tions are included in U eff . The discussion in Sec. 2

has shown that if U eff/W is much larger than 1, we

can expect the 2D electron gas to show a metal–

insulator transition. For our system U eff/W ≈ 5

and we are clearly in the insulating phase. As dis-

cussed in the example of Fig. 1, for U eff/W � 1, the

band is split into two bands located around ±U eff/2

w.r.t. the initial Fermi level, the two bands present-

ing a width of half the initial LDA band width.

Northrup and Neugebauer7 have found these results

to be in good agreement with the angle-resolved pho-

toemission data.4

Bechstedt and collaborators46 have also analyzed,

using an LD approximation, the surface band struc-

ture of the Si-rich SiC(111)-(3×3) surface. Figure 14

shows their results, with a half-occupied surface band

located around 1.2 eV above the valence band top.

This band, associated with the dangling bond of the

topmost Si atom, has only a bandwidth of 0.1 eV.

This very small value is due to the large distance

(see Fig. 12) between those dangling bonds. Bechst-

edt et al.8 have estimated U eff to be around 1 eV, 10

times the surface band width. We conclude that this

surface band should also present strong correlation

effects and would be split into two bands, very much

like the case of the
√

3×
√

3 reconstruction.
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We conclude this section with the following

comments:

(a) The surface bands associated with the Si-rich

SiC(111)-(
√

3 ×
√

3) or -(3 × 3) reconstruc-

tions present important correlation effects and

a Hubbard–Mott metal–insulator transition. In

these cases, only U eff is the driving mechanism

for the phase transition.

(b) The surface bands associated with the Si(111)-

(7 × 7), -(5 × 5) and -(3 × 3) reconstructions

show a much richer variety. The reason is that

the surface bands associated with the corner hole

and/or the rest atoms are fully occupied. Then,

the partially filled adatom bands present occu-

pancies between 5/24 and 1/4; for these occu-

pancies one has to resort to detailed calcula-

tions to analyze the correlation effects associated

with these states. In view of the charge trans-

fer appearing in these Si(111) reconstructions,

we can say that — when it is present — the

metal–insulator transition has a charge transfer

character.

4. Interfaces

In this section we shall analyze different semicon-

ductor interfaces where electron correlation effects

have been found to be important. The first case

we discuss is the Sn/Ge(111) interface, which shows,

at low temperature, a 3 × 3 reconstruction. This

system — and the Pb/Ge(111) case — presents a

surface phase transition from the room temperature

α(
√

3×
√

3)-R30◦ phase to the mentioned 3×3 struc-

ture at around 200–250 K.3,14 This transition has re-

cently been explained as a dynamical fluctuation be-

tween two positions of the Sn atoms adsorbed on the

Ge(111): at low temperature, this fluctuation is sta-

bilized and the interface shows a 3×3 reconstruction,

with two inequivalent Sn atoms located at different

heights on the Ge surface.47 In this paper we ana-

lyze this 3×3 reconstruction, whose geometry48,49 is

shown in Fig. 15, and point out some striking sim-

ilarities it has to the Si(111)-(3 × 3) reconstruction

discussed above.

As a second example where important correla-

tion effects appear at semiconductor interfaces, we

analyze the case of alkali metals (AM) deposited

on semiconductors. We consider two cases — one

(a)

(b)

Fig. 15. (a) Top view and (b) side view of the
Sn/Ge(111)-(3 × 3) reconstruction. In this surface, one
Sn atom per unit cell is displaced upwards by 0.24 Å,
and the other two Sn atoms are displaced downwards
by 0.12 Å w.r.t. the Sn layer of the ideal

√
3 ×

√
3

reconstruction.

is the AM/GaAs(110) interface. This is an impor-

tant system from the point of view of the metal–

semiconductor junction. In this paper, we only dis-

cuss how metallization appears when alkali atoms are

deposited on GaAs(110) (readers interested in the

more general problem of the Schottky barrier forma-

tion are referred to Ref. 13). The other case we dis-

cuss is the K/Si(111)-(
√

3 ×
√

3)-B interface, which

has recently been shown to present a Mott-insulating

ground state.2

4.1. Sn/Ge(111)-(3× 3) reconstruction

This reconstruction has been analyzed theoreti-

cally using a first principles molecular dynamics

technique.47 In this approach, a local orbital self-

consistent LDA method is used to obtain first prin-

ciples atomic forces efficiently. The geometry found

for the 3× 3 reconstruction (see Fig. 15) shows one

Sn atom per unit cell displaced upwards 0.24 Å and
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Fig. 16. LDA surface bands (solid lines) and correlated
surface bands (dotted lines) of the Sn/Ge(111)-(3×3) sur-
face. The lower surface band is doubly occupied, while
the two surface bands around EF accommodate only one
electron; the total weight of each of these surface bands is
1.5 electrons (spin included). The surface bands∼ 0.4 eV
above EF present the remaining total weight of one elec-
tron (0.5 electrons each band). The directions Γ–Q, Q–P
and P–Γ of the two-dimensional Brillouin zone are shown
in Fig. 5(b).

the other two Sn atoms displaced downwards 0.12 Å

w.r.t. the Sn layer of the
√

3 ×
√

3 symmetry. In

Fig. 16 (solid lines) we show the calculated LDA

bands for the 3×3 reconstruction. One can under-

stand the energy position of the surface bands in

terms of the reconstructed geometry. For the Sn

atom displaced upwards, rehybridization causes its

dangling bond to have a more s-like character and a

corresponding lower energy (more binding energy).

The lower surface band in Fig. 16 is associated with

that atom and it is doubly occupied. On the other

hand, the other two surface bands — located around

EF — are associated with the two dangling bonds

of the Sn atoms moving downwards. In these atoms,

the rehybridization due to the new reconstruction

tends to shift their dangling bond levels towards

higher energies.

It is interesting to compare this reconstructed

surface with the Si(111)-(3 × 3). In both cases we

find similar geometries associated with the atoms

whose surface bands are located around the Fermi

energy, and we also find the same one-quarter band

filling. In the Si(111)-(3×3) reconstruction, the lower

fully occupied band is associated with the corner hole

atom, while in the Sn/Ge(111)-(3 × 3) interface we

find a similar doubly occupied surface band associ-

ated with the Sn atom that has relaxed towards the

vacuum side. The main difference between the band

structure of these two sytems close to EF can be

related to the energy levels of the two partially occu-

pied dangling bonds, which in the Sn/Ge(111) case

are practically the same, while in the Si(111)-(3× 3)

case there is an energy difference of around 70 meV

due to the inequivalence between the faulted and un-

faulted sides of the surface. Note that the two sur-

face bands around EF for the Sn/Ge(111) case over-

lap in energy and show a metallic character. This

is in contrast to the semiconducting behavior of the

surface bands found for the Si(111)-(3× 3) and it is

the result of having two equivalent Sn atoms in the

Sn/Ge(111)-(3× 3) reconstruction.

In order to define the parameters U and J associ-

ated with the generalized Hubbard Hamiltonian for

this reconstruction, we have also used a restricted

LDA calculation and have assumed that electrons in

different dangling bonds interact with each other like

point charges located in front of a semiconductor sur-

face. This approach yields U ≈ 0.9 eV and values of

J ranging between 0.35 eV (for nn charges) and zero

(for long distant charges).

In a further step, we have calculated correlation

effects on the surface bands by introducing the local

self-energy defined in Sec. 2, and treating the off-site

Coulomb interaction, J , in a mean field approxima-

tion. Dashed lines in Fig. 16 show the correlated

bands calculated in this way. Important points about

the results are:

(a) The doubly occupied surface band located

around 0.3 eV below EF is barely modified by

correlation effects, keeping its total weight of two

electrons per unit cell.

(b) The two surface bands located around EF are

split into two discontinued pieces. The one

around EF is still similar to the initial LDA

bands although, instead of having a total weight

of four electrons (for two bands) per unit cell, it

has now a total weight of 4× 3
4 = 3 electrons. On

the other hand, we find a new structure, around

0.5 eV (this is the value of U eff ≈ U − J , with J

the nn Coulomb interaction) above EF , with a

total weight of 4 × 1
4 = 1 electron per unit cell.

These results should be compared with our dis-

cussion of Fig. 2, and they show that correlation
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effects reduce the total density of states around

EF by a factor of 3
4 for a quarter-filling band.

(c) Finally, we note that, in spite of these important

correlation effects, the system is still metallic,

in contrast with what we found for the Si(111)-

(3× 3) reconstruction. In relation to Fig. 2, we

should also say that in this surface Jeff is not

large enough to drive a metal–insulator transi-

tion as shown in Fig. 2(c).

In conclusion, correlation effects for this inter-

face are relevant but they do not change too much

the surface state band structure associated with the

bands located around or below EF . A new struc-

ture appears, however, in the density of states lo-

cated 0.4 eV above EF . It is worth commenting that

the two bands located below EF have been observed

with photoemission,47,50 yielding a strong support

to the results presented for the Sn/Ge(111)-(3 × 3)

interface.

4.2. Alkali atoms on GaAs(110)

The adsorption of alkali atoms on GaAs(110) has

been a subject of great interest for understanding

the early stages of the Schottky barrier formation.51

The advantage of using alkali atoms is that they do

not diffuse into the semiconductor crystal and that

they tend to form a flat monolayer for an appropriate

coverage.

Our discussion in this paper about this interface

will be limited to analyzing the surface geometry,

the surface bands and the correlation effects appear-

ing for alkali metal coverages of less than or around

a monolayer. A more complete discussion on this

problem can be found in Ref. 13.

The adsorption of Na, K or Cs on GaAs(110) has

been analyzed by several groups.12,51,52 In the limit

of very low coverages, alkali atoms tend to adsorb

on the Ga dangling bonds as shown schematically in

Fig. 17, where a top view of the GaAs(110) surface is

shown, indicating the preferential sites for atomic Na

or K adsorption.53,54 For increasing coverages alkali

metal atoms tend to form linear chains and/or small

islands before reaching the physical coverage limit of

a monolayer.52

Correlation effects, in this coverage limit of a

physical monolayer, have been analyzed theoretically

by assuming that alkali atoms (Na or K) saturate

all the Ga dangling bonds of the GaAs(110) surface

Fig. 17. Schematic top view of the GaAs(110) surface
indicating the adsorption site, I (Ga dangling bond), of
the alkali atoms.

Fig. 18. Band structure of the Na/GaAs(110) interface,
for a coverage of θ = 1/2 (after Ref. 55). For this cover-
age, one alkali atom saturates each Ga dangling bond.
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Fig. 19. (a) Top view and (b) side view of the
K/Si(111)-(

√
3 ×
√

3)-B interface. The B atoms are lo-
cated substitutionally in the second layer of the crystal.

(this is nominally a coverage of Θ = 1
2 ).54,13 Fig-

ure 19 shows the electronic surface band structure for

the Na/GaAs(110) interface as calculated by Heben-

streit et al.55 for this coverage. This, as well as other

calculations for K,53 shows that the effect of the al-

kali layer is to create a half-occupied surface band

located in the middle of the semiconductor energy

gap. As the surface band width is small, around

0.5–0.7 eV, we can expect to find important corre-

lation effects in the 2D electron gas associated with

that band.

Restricted LDA calculations6,54 for the Na and

K/GaAs(110) interfaces have given values of U eff =

1.5 and 0.6 eV respectively. Other estimates for K

have yielded U eff = 1.2 eV.56 In view of these uncer-

tainties, we can only say that U eff is around 0.9 eV,

a value that may have an error of ±0.3 eV.

Using this value of U eff , and the surface band

structure shown in Fig. 17, one can follow the analy-

sis of Sec. 2 and the results shown in Fig. 1 to decide

on the existence of a Mott transition in this inter-

face. For Na and K, we find that U eff/W ≈ 1.8 and

1.5 for Θ = 1
2 , respectively. This suggests that the

monolayer of Na is insulating and that its K counter-

part is around the metal–insulator transition point.

Considering the uncertainty in the value of U eff , one

should, however, take these results with some care.

Notice that for Θ < 1
2 , the width of the sur-

face band is going to decrease and U eff to increase

(because of the smaller screening due to the near-

est neighbors). This indicates that U eff/W increases

for smaller coverages, suggesting that the system is

going to have a Mott transition not far from the 1
2

nominal coverage.

These results have extreme importance when one

analyzes the formation of a metal–semiconductor in-

terface in the limit of low coverage. The point to

note is that for very low coverages (Θ < 1
2 ), the

metal layer deposited on the semiconductor is not yet

metallic and that the interface Fermi level can fluc-

tuate in the semiconductor energy gap depending on

the semiconductor doping. Only for coverages Θ > 1
2

does the metal layer become metallic and the inter-

face Fermi level can be pinned by a finite density

of states. At that moment the Schottky barrier is

formed and we find a barrier height that practically

corresponds to a fully developed interface.13

4.3. K/Si(111)-(
√

3×
√

3)-B interface

This is another example where correlation effects

have been observed experimentally.2 Figure 19 shows

the geometry of the K/Si(111)-(
√

3×
√

3)-R30◦-B in-

terface. In this geometry, Si adatoms form a
√

3×
√

3

lattice. The B atoms are located in substitutional

sites in the second layer of the crystal, just below

the Si adatoms, as shown in Fig. 19.

The important thing to note is that the B atoms

(valence 3) take the electrons of the Si adatom dan-

gling bonds, leaving empty the surface band associ-

ated with these dangling bonds.

When K is deposited on this surface, electrons are

transferred from the alkali atoms to the empty dan-

gling bonds, creating for a
√

3×
√

3 lattice (with K

forming a structure in registry with the initial one) a

half-occupied surface band. As Weitering et al. have

commented:2 “This interface should be metallic ac-

cording to band theory. Instead, the single particle

excitation spectra show two prominent features near

EF , which are identified as the Hubbard bands of a

2D Hubbard system.”

Figure 20 shows the photoemission and the in-

verse photoemission spectra for this system,2 as a

function of the K coverage, between Θ = 0 and

Θ = 1
3 . From these curves, one can deduce that there

is an effective intrasite Coulomb interaction, U eff , of

around 1.5 eV. This value is much larger than the

bandwidth of the half-occupied surface band that is

estimated by Weitering et al.2 to be around 0.2 eV.

We see that U eff/W is around 7.5, much larger than

1–2, the value for which we can expect the system

to present a metal–insulator transition, confirming
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Fig. 20. Direct and inverse photoemission spectra of the
K/Si(111)-(

√
3 ×
√

3)-B interface (after Ref. 2). Ueff is
defined by the two peaks, S2 and S1, appearing in the
direct and inverse photoemission spectra, respectively.

theoretically that this system presents a Mott-

insulating ground state.

5. Conclusions

The analysis presented in this paper shows that many

different surfaces and interfaces present important

many-body effects that modify dramatically the one-

electron picture yielded by an LDA calculation.

Several cases, including the Si-rich SiC(111)-

(
√

3 ×
√

3) and -(3 × 3) reconstructions, the al-

kali atom – GaAs(110) interface and the K/Si(111)-

(
√

3 ×
√

3)-B interface, can be classified as a

Mott–Hubbard insulator system with a half-filled

dangling bond surface band. These cases can be

analyzed using a restricted Hubbard Hamiltonian,

for which the main parameters characterizing the

system are the effective intrasite Coulomb repul-

sion, U eff , and the bandwith W . Typically, the sys-

tems analyzed [except the AM/GaAs(110) for a half-

monolayer coverage] present values of Ueff/W much

larger than 1, defining an insulating phase, and show-

ing that the one-electron picture provided by the

LDA calculations breaks down.

Other cases, like the Si(111)-(7 × 7), -(5 × 5)

and -(3 × 3) reconstructions or the Sn/Ge(111)-

(3 × 3) interface, are more complicated. In a sense,

these are charge transfer systems where electrons

near the Fermi energy are transferred from partic-

ular dangling bonds forming the surface bands to

more localized levels. For instance, in the Si(111)-

[(2n + 1) × (2n + 1)] reconstructions electrons from

the adatom dangling bonds are transferred to the rest

atoms and/or the corner hole dangling bonds. This

defines a 2D electron gas with mean electron occu-

pancies per dangling bond smaller than 1 (or 1/2 per

spin). For example, in the Si(111)-(7× 7) we find 5

electrons in 12 dangling bonds (defining a 5/24 oc-

cupancy per spin), in the Si(111)-(5× 5) 3 electrons

fill 6 dangling bonds (with a 1/4 occupancy), and

in the Si(111)-(3 × 3) reconstruction 1 electron fills

2 dangling bonds (also with a 1/4 occupancy). It

is interesting to note that the Sn/Ge(111)-(3 × 3)

interface also shows a geometry similar to the one

found in the Si(111)-(3 × 3) reconstruction, with 2

electrons filling the dangling bond of the Sn mov-

ing upwards. Then, the partially occupied surface

bands correspond to having 1 electron filling 2 dan-

gling bonds (with a 1/4 occupancy, as in previous

examples).

The analysis of these charge transfer systems is

more involved than that presented for the restricted

Hubbard–Mott insulator and needs a specific discus-

sion. Moving from the simpler cases to the more

complicated ones, we mention first the Si(111)-(5×5)

reconstruction where we find, basically, electrons al-

most localized in hexagonal structures. This yields

an insulating phase due to the Coulomb interac-

tions appearing in the hexagonal rings and also to

the small hopping interactions between those struc-

tures. The Si(111)-(7 × 7) reconstruction presents

some hexagonal surface structures similar to the ones

found for the Si(111)-(5 × 5); our analysis shows

that three electrons, out of the five filling the surface

bands, get localized in those hexagonal rings. The

other two electrons per unit cell can move along some

“dimer” structures that appear intercalated among

the rings. We find that these two electrons are re-

sponsible for the metallicity of the Si(111)-(7 × 7)

reconstruction.

Finally, the Si(111)-(3 × 3) surface and the

Sn/Ge(111)-(3× 3) interface show similar band fill-

ings but have different characters. The Si(111)-(3×3)
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surface is found to be insulating, basically due to the

difference between the faulted and unfaulted levels

of the corresponding adatom dangling bonds. The

Sn/Ge(111)-(3×3) interface appears, however, to be

metallic. This is basically the result of having two

equivalent dangling bonds per unit cell contributing

to the formation of a metallic band in spite of the

strong Coulomb repulsion between electrons.

We conclude that, at variance with the Mott–

Hubbard insulator, the 2D charge transfer systems

show a rich variety with either a semiconducting or a

metallic character, depending as much on the surface

geometry as on the electron–electron interaction.
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