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Abstract—Total-energy pseudopotential calculations are used to study the cleavage fracture processes in
silicon. It is shown that bonds break continuously and cracks propagate easily on {111} and {110} planes
provided crack propagation proceeds in t140) direction. In contrast, if the crack is driven in{@01)
direction on a {110} plane the bond breaking process is discontinuous and associated with pronounced
relaxations of the surrounding atoms. The discontinuous process is partly a result of some load sharing
between the crack tip bond and the neighbouring bond, which results in a large lattice trapping. The different
lattice trapping for different crack propagation directions can explain the experimentally observed cleavage
anisotropy in silicon single crystal§] 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION expected to choose a cleavage plane with low surface
The macroscopic failure of materials is uItimater.enerw.and.to propagate on this plane with equal ease
. . ._”in all directions.

determined by events on the atomic scale. This is From an atomistic point of view the situation is
particularly clear in the case of brittle fracture, where mewhat different pThe first atomistic studies
the crack at its tip must be atomically sharp and breaﬁﬁowed that the discl:reteness of the lattice manifests
the bonds between atoms. Such a brittle crack c elf in the so-called lattice trapping effect [2, 3]. In
therefore be regarded as a macroscopic probe for t 5 ; ppIng L

a crude continuum analogy, lattice trapping can be

atomic bonding. . : o
Following Griffith [1], one may regard the staticmterpreted as if the surface energy was oscillating

crack as a reversible thermodynamic system fd/}/i'[h a period of the atomic distance. Lattice trapping

which one seeks equilibrium. This equilibrium con-fauSes the crack to remain stable and not to

dition leads to the so-called Griffith criterion, whichadvance/heal until loads somewhat larger/smaller
balances the mechanical energy release upon crdfn the Criffith load are reached. It has been shown
advance< with the energy required to create the twdghat the magnitude of the lattice trapping effect
new surfaces £ Although the Griffith criterion, strongly changes with the bonding cr_\aracterlgtlcs [3-
&'= 2y, is often regarded as a fracture criterion, it i$l- Later studies showed that the lattice trapping may
important to note that it is only a necessary conditioRVeN depend on the direction in which the bonds are
for fracture and not sufficient. Nevertheless the Griforoken and therefore be very different for crack
fith criterion leads to two important conclusions: (1)Propagation along different crystallographic direc-
crystal lattice planes with low surface energies aréons on one cleavage plane [7-9].

energetically favoured as cleavage planes, and (2) aSemiconductors, particularly silicon, are materials
given cleavage plane will have a single unique valudat may be suitable to test the perfectly brittle case
of .. A perfectly brittle crack in a crystal is thereforeexperimentally. Silicon can be produced as a virtually
dislocation-free single crystal and crack tips have

been observed in the transmission electron micro-

" scope to propagate in the absence of dislocations [10,
004go7¥v1hggwgglllczzglrrespondence should be addressed. Faﬁ(p. 79-142]. Silicon has been studied extensively for
E-mail address: gumbsch@finix.mpi-stuttgart.mpg.deits fracture characteristics [11-15]. The results of

(P. Gumbsch) these studies are summarized for example in [16]. In
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short, silicon is reported to have two principal cleavebtain crack propagation in Si in their molecular
age planes: {111} planes, usually the easy cleavaglynamics simulations. Of course, this introduced
planes [16], and {110} planes, the planes of easynwanted changes to the bulk properties of the poten-
cleavage in polar IlI-V semiconductors [14-17]tial. We have experienced similar problems in our
which in silicon can only be obtained under specifi@attempt to simulate crack propagation in Si with the
conditions for the propagation direction [14]. It is notTersoff potential [23]. Despite the fact that this poten-
clear which of the planes has the lower fracturéal is apparently able to describe structures with
toughness K. The most accurate constaft- atomic coordination quite different from the bulk dia-
experiments [14] seem to show thatmond lattice, like surface reconstructions, our simula-
{110} planes have a slightly lower fracturetions showed unphysical structural transitions at the
toughness K$,,=0.89 MPa/m) than {111} planes crack tip. These are attributed to the extremely short-
(K$1, = 0.92 MPa/m). Different crack propagation range character of the interaction.
directions have been studied for both crack planes:In the absence of a simple and yet reliable model
the (110 and(211) directions for {111} cleavage and for the interaction, two different approaches can be
the (110 and (111) directions for {110} cleavage followed. One way is to retain a large atomistic
[16]. The (110 propagation direction was seen to beegion and treat the atomic interaction as a free para-
the easy propagation direction for both cleavagmeter which can be modified in order to identify the
planes. One orientation which was not reported irelevant features that influence crack propagation.
[16], the (1000 propagation direction on the {110} Alternatively, one can compromise on the size of the
plane, could not be cleaved [9]; the cracks wersystem and concentrate on the quality of the descrip-
observed to deflect out of the {110} onto the {111}tion of the atomic interaction. Total-energy pseudopo-
planes. This indicates a very strong cleavage artential methods, based on density functional theory
sotropy with respect to the propagation direction ofDFT) and the use of a plane-wave basis set, have
the same cleavage plane. Such an anisotropy has dis®n known since the early 1980s to provide a very
been reported for cleavage fracture in tungsten singéecurate description of the structural and energetic
crystals [8]. properties of solids. The size of the systems that one
Atomistic modelling of cracks is a rather compli-could study with those methods was limited to tens
cated problem because both the long range lineaf atoms, mainly due to the poor system size scaling
elastic interaction, characterized by th€Rkingular- of the time needed for the diagonalization of the ham-
ity in the stress field, and the short-range chemicd@tonian. Recent methodological advances, in parti-
interactions, which are responsible for the atomicular the development of iterative minimization tech-
scale breaking of bonds at the crack tip, are needeijues [24], and the use of parallel computers have
for a correct description of the problem. Changes afow made it possible to study systems containing
the atomic positions at the crack tip will be carriechundreds of atoms with quantum mechanical
far away by the weak singularity. To properly handlanethods. This opened the way to extend the applica-
the boundary conditions for the atomistic region, sewility of quantum mechanical methods to the study of
eral schemes which combine an atomistic region witthe mechanical properties of materials. Taking advan-
a flexible continuum region have been developed [Tage of these methods it is today possible to study
18-20]. The boundary conditions from the field of arthe structure of the crack tip during crack propagation
elastic crack can then be imposed on the outer bordesing ab initio methods to describe the atomic inter-
of this continuum region. Apart from the difficulties actions.
involved in the transition between the lattice and the The purpose of this paper is to follow this second
continuum and the application of the boundary corroute and to analyse in detail the bond breaking pro-
ditions, the description of the interactions in the atomeesses at crack tips in silicon. The analysis is based
istic region is a problem in itself. The large number obn ab initio methods which can accurately describe
atoms involved requires a simple and computationallyhe non-linear forces acting on the crack tip atoms. A
efficient description of the atomic interaction. Therefull quantum mechanical study is necessary to capture
fore, empirical atomic potentials are usually used fahe details of the bond breaking process and of the
fracture simulations. These empirical interatomisubsequent reconstructions of the internal surfaces of
potentials are fitted to bulk properties and may thetine crack. Earlier work along this same direction was
reproduce these properties well. However, the atomieported by Spencet al. [25]. They used a non-self-
coordination close to the crack tip differs substaneonsisten@b initio tight-binding method to study the
tially from the bulk environment. The applicability lattice trapping for cracks on the (111) plane with a
of these empirical potentials for crack simulations i§011] front. In our case, more elaborate total energy
therefore, at least, questionable. pseudopotential methods [24] are used to study differ-
Recently, Holland and Marder [21] have demonent propagation directions on the (111) and (110)
strated very clearly the limits of these empiricatleavage planes. A fixed boundary approach is used
descriptions for the application in fracture simulaio enforce the elastic boundary conditions rep-
tions: they had to manipulate the three-body term ag&senting the crack field. Particular attention is payed
the Si Stillinger—Weber potential [22] in order toto the influence of the fixed boundary by studying the
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scaling of the results with system size and the changes
with the relative position of the singularity in the elas-
tic field of the crack and the atomic position of the
crack tip. We have also determined the surface ener-
gies, vy, for the (111) and (110) cleavage planes. To
the best of our knowledge, this is the first calculation
using first-principles methods of this key ingredient
in the analysis of the crack stability.

The results presented here, although limited by the
approximations made, provide a basic understanding
of several experimental features of crack propagation
in Si. In particular, they show that lattice trapping is
important for crack propagation and that lattice trap-
ping provides a straightforward explanation for the
experimentally observed anisotropy with respect to
propagation direction. These detailed studies may
further be used to guide the development of simpler
semi-empirical atomic interaction models, which have
so far failed to give an accurate description of the
crack tip.

The rest of paper is organized as follows: SectioRig. 1. lllustration of the boundary conditions used in our simu-
2 is devoted to the description of the different Craclé‘ti‘?”s- The atoms outside of the d_ashed Ii_ne are kept fixed
systems, the model used to describe the cracks witHn9 the rﬁ}'glf"(‘jtfd”inptrﬁgeasti'm‘i’ghr'ﬁa;gﬁo:]””er atoms are
ab initio methods, and the procedure we use for the '
determination of the lattice trapping range. Section 3
presents the structural and energetic properties of both
bulk and low-index Si surfaces, with special attention

to the determination of the surface energies Obtam%vdnereR is the distance from the crack tip. labels

with our pseudopotential. The results for the stabilif[)(he different stress components and M stands for the

of the different crack orientations are introduced N ening. the shearing or the tearing mode of loadin
Section 4 and their relevance to the understanding 8P 9 9 9 9:

the experimental results is discussed in Section 5. Theand are functions of the angl® betweenR and
main conclusions and the perspectives for future woitke crack plane; they further include the crystallo-

are summarized in Section 6. graphic orientation of the crack system via the appro-
priate elastic constants. The functionsand 8 are

2 METHODOLOGY calculated within anisotropic linear elasticity theory

[26]. The applied external load and the geometry of

2.1. Crack geometry the crack are contained within a single multiplicative

The goal of this study is to determine the stabilityfactor, the stress intensity factét,, which thereby
of cracks with different propagation directions on th&haracterizes the “strength” of the stress field. More
(111) and (110) cleavage planes. In particular, theetails about the stress field and the energetics of the
(110) cracks with [001] and [1] fronts ([110] and crack are given in Section 2.3.
[001] propagation directions, respectively) and the The starting configuration of the atoms is given by
(111) crack with a [01] front ([211] propagation the anisotropic elastic displacement field for the start-
direction) are considered. In the following, the crysing stress intensity factd<". Only mode | (opening
tallographic orientation of the crack system is specimode) loading is considered here. The atomistic
fied by the orientation of the crack plane and of théegion around the crack tip has dangling bonds at the
crack front as: (plane)[front]. outer surface. These dangling bonds are saturated

To study crack tips atomistically it is necessary tavith H atoms, as shown in Fig. 1 for the (110) crack
provide the atomistic region with the appropriatavith a [110] front. It was found that all the bonds of
boundary conditions from the elastic field of theSi atoms which are partially saturated with hydrogen
crack. Within linear elastic continuum theory, a shargtoms are somewhat less stiff than the bulk Si-Si
straight crack is characterized by the stress figld bonds. Therefore, not only the outermost Si atoms but
and the displacement fielat the positions of the outermost two layers of Si atoms
are kept fixed at the positions given by the linear elas-
tic solution (see Fig. 1). The other atoms are relaxed
using a conjugate gradient minimization and an ab
initio method to determine the total energy and the
. forces. The system is relaxed until a stable crack tip
u, = KyVRBY(0) (2) structure is obtained.

0, = o (0) ()
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Table 1. Relevant crystallographic information for the different crack systems considered. The crystallographic orientation of the cradk systems
given together with the dimensions in the propagation direction, normal to the crack plane and along the crack front (in units of the bulk lattice
parameter for the eight-atom simple cubic cell), the number of Si and H atoms in the unit cell, and the extra lenpd@edito the dimensions

in the propagation direction and normal to the crack plane to determine the supercell lattice vectors

Crack orientation Dimensions No. of atoms Vacuum size
(plane)[front] Si+H (A)
(110)[110] small 6/2x 2V2 x V2[2 48 + 30 10, 14
(110)[110] medium 712% 5/2/2 x J2[2 68 + 34 9, 13
(110)[110] large 8/2x 6/2V2_x V2/2 96 + 42 11, 14
(110)[001] medium 22 x 22 x 1 64 + 32 9, 14
(110)[001] large 32 x 3V2 x 1_ 144 + 48 9,14
(111)[011] medium 3/2/6 x 2V3 x V2 70 + 26 10,13

Periodic boundary conditions are applied along the crack tip in the crack propagation direction as the
crack front direction to simulate plane strain conatomic bond breaks and the crack advances. To check
ditions. Periodicity is also enforced both in the crackhe influence of the fixed boundaries on the stability
propagation direction and the loading direction. Howrange of the crack, the stability of the medium size
ever, in these directions the supercell size was chossystem for the (110) crack with [D] front was stud-
larger than the size of the atomic system to avoid tHed for three different positions of the crack tip with
interaction between the atoms in neighbouring cellsespect to the atomic bond. The different positions are
The supercell size was chosen large enough to assshewn in Fig. 4. For the (110)[001] and (111)i41
a distance of more than 10 Between atoms in the cracks, where the bonds are perpendicular to the crack
periodic cells even for the largest loads. plane, it is assumed that the crack tip is located in

To determine the influence of the size of the atonthe middle of a bond.
istic region on the stability of the cracks we hav .

Studiedgthe variation of the)llattice trapping range wit?wz'z' Computational method
system size for the cracks on the (110) plane. Table The energies and atomic forces were calculated
1 summarizes the relevant crystallographic inforwithin the local density approximation (LDA) to DFT
mation for the different systems we have considereéh its plane-wave pseudopotential formulation [24].
the dimensions in the propagation direction, normaVithin DFT the determination of the ground state of
to the crack plane, and in the direction of the crack system of many interacting electrons and ions is
front (in units of the bulk cubic lattice parameter) arenapped onto a single particle problem with an effec-
given together with the number of Si and H atoms itive one-body hamiltonian. This hamiltonian contains
the unit cell, and the extra length added to the dimeithe usual kinetic energy, ion—electron and Hartree
sions in the propagation direction and normal to theteraction terms plus the so-called exchange—corre-
crack plane to determine the supercell lattice vectorktion contribution. The exchange—correlation func-
Figures 2 and 3 show the relaxed atomic configutional is not known exactly, but approximated by the
ations of the crack tip atoms of all (110) crack systDA, which usually provides a very good description
tems at a load where all the systems are stable. of the structural and energetic properties of solids.

The use of fixed boundary conditions for the atomPseudopotential theory replaces the strong electron—
istic region may affect the stability range of the crackon Coulomb interaction potential with a much
because the elastic field is not allowed to readjust tweaker pseudopotential, which effectively includes
the changes in the atomic coordinates near the crattie Pauli repulsion of the valence and the core elec-
tip. ldealized flexible boundary conditions wouldtrons.
move the singularity of the stress field together with The supercell approximation allows one to deal

Fig. 2. Relaxed atomic configurations for the different systems sizes of the (Impmark at a stress intensity
factor of K, = 1.2(KP, where all systems are stable. Details of the different systems are given in Table 1. The
bonds across the crack plane are labelled 1-6 for further reference. Dashed lines correspond to broken bonds.
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Fig. 3. Same as Fig. 2 but for the (110)[001] crack system.

ation of the electronic system and the atoms is
repeated until the total energy is converged to“10
eV/atom and the forces fall below 0.01 eV(8.016
nN) on every atom.

The computational cost of the iterative minimiz-
ation techniques used to determine the ground state
electronic energy scales witNp,,, the number of
plane waves afNpy IN Npw, With NpwxES2 It is
therefore important to keep the cutoff energy as low
as possible, without compromising on the quality of
the description provided by the pseudopotential. An
optimized non-local pseudopotential [28, 29] has
been used here for silicon. Theandd components
Fig. 4. Different positions of the centre of the elastic field ofOf the potential are mac!e S'm'l_ar and optimized _to
the crack with respect to the atomic coordinates that have beBtake the pseudopotential rapidly convergent with

studied for the (110)[1] crack. respect to the cutoff energy in the plane-wave expan-
sion. The pseudopotential was applied in a separable
form, taking thep component as reference and includ-
with arbitrary atomic Configurations within the frame-ing 0n|y the s non-local Component_ The projection
work of Bloch’s theorem. The electronic wave fUnC'of this Component was performed in real space [30]
tions are expanded in terms of a discrete plane-wav#is pseudopotential provides a good description of
basis set, exp[+ G)r], wherek is a vector in the the structural and energetic properties of Si, as shown

o - ) ) in Section 3. A bare Coulomb potential is used for
Brillouin zone andG is a reciprocal lattice vector. hydrogen.

The number of plane waves included in the calcu- o . .
lation is characterized by the cutoff enerd,; only 2.3. Determining lattice trapping

plane waves with kinetic energyA32mlk + GP 2.3.1. Method for loading/unloading. The Girif-
smaller than the cutoff energy are included in the cafith model provides the starting point for our analysis
culation. This truncation of the plane wave basis leadsf crack stability. The Griffith stress corresponds to
to errors in the total energy. However, these erroithe exact balance between the energy stored in the
can be controlled directly via the cutoff energy. Theslastic field of the crack and the energy needed to
sampling of the Brillouin zone is performed using areate the two fracture surfaces. From linear aniso-
Monkhorst—Pack-mesh of k1x4 (two inequivalent tropic elasticity, it is known that the stored elastic
k points) [27]. energy,4, is proportional to the square of the stress-
The search for the ground state of the electroniotensity factor K2 Only mode | (opening mode)
system for a given atomic configuration is performetbading of the crack is considered here. Calculated
with a direct, completely self-consistent second ordesurface energies are used to determine the values of
search for the minimum of the electronic energy funck® which satisfy the Griffith criterion for the different
tional, using a conjugate-gradient method. Once therack orientations. Table 2 provides all the relevant
electronic ground state is known, forces on the diffeinformation for this analysis, including the values of
ent atoms are calculated and the atoms are relaxikd.s (related to the crack geometry and the elastic
using a conjugate-gradient minimization. This relaxeonstants of the material), the surface energy and the
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Table 2. Relevant information characterizing the crack systems. The valu#ofeflect the elastic anisotropy. The calculated surface energies
(in units of eV/A and J/m) are needed to calculate the critical stress intensity fadtfrs

Crack orientation K2.o Surface energy KE
GPa eVig Jin? MPa/m
(111)[om] 56.21 0.08997 1.441 0.4026
(110)[110] 57.79 0.1082 1.733 0.4476
(110)[001] 51.99 0.1082 1.733 0.4245

resulting critical value for the stress intensity factocrack tip to much larger values associated with
KE. The experimental elastic constants of Si [31] haveroken bonds. The displacement of the crack can thus
been used for the determination §f/.. be monitored through the changes in bond distances
As discussed in the introduction, experiments andf the bonds close to the crack tip.
theoretical calculations show a clear deviation from Fig. 5 shows bond distances for the large
the behaviour predicted by the simple Griffith picture(110)[110] crack system for all the different loads
Cracks can be stable for a range of differentonsidered in our study. Bond no. 4, the bond closest
strain/stress values around the critical Griffith valuep the crack tip location in the elastic field, is intact
the so-called lattice trapping range. To determine thigr the initial load of 1.20KS. It has a length of 2.9
range, the structure of cracks is studied for differenk and is therefore stretched by almost 25% compared
loads above and below the Griffith valuy. to the bulk value. Bond no. 3 has a bond length of
The initial crack configuration corresponds to theymost 5 Aand is clearly broken. Upon loading the
atomic coordinates given by linear anisotropic elasystem, the bond distance for bond no. 4 increases
ticity theory for a stress intensity factor of 1.0 or 1.Zsmoothly up to a load of 1.3BS where it increases
KE for all the crack orientations considered. Theypbruptly from about 3 Ao about 4 ‘A This abrupt
initial configurations are fully relaxed to mechanicahhange is signalling the breaking of this bond and the

equilibrium to determine the crack structure for thesggyance of the crack by one lattice site. This load of
loads. All configurations are stable at both loads. The 35 kg s therefore identified as the upper lattice

resulting .structure.with j[he opened crack is t.aken @fapping limit, K,*, for this crack orientation. Bond
the starting configuration for further loading or,, 3 shows a similarly abrupt decrease of the bond

unloading: the initial configurationr (., for the new distance for a load of 0.9&® — the bond is still

load (K'Y is determined from the previous relaxedmarginally stable for 0.9%pP. The abrupt change is
. L . . related to the re-formation of this bond and the reced-
configuration ( qs) by re-scaling the displacement Ofing of the crack by one lattice site. This load is thus

the atoms with the ratio of the stress intensity facmr?dentified with K;~. The lattice trapping rangaK is
according to: then defined adK = (K" —K; )/K®.

new

—

- - ! -
S e @(r old— I ref) (3)

7.0

where r o are the atomic coordinates of the perfect
crystal. Note that such scaling is exact within linear
elasticity theory. Loads up to 1.B® and down to
0.75K¢ have been explored in steps of 0.RS. We
have carefully checked that the loading history does
not change the stability of the crack.

6.0 v

50

>
=)

2.3.2. Determination of bond distances angd K.
The structure of the crack for different loads provides ©
all the necessary information to determine the lattice §
trapping range. In particular, the behaviour of bond @
distances across the crack plane as a function of loa
contains clear features which signal the advance o 20

d distance (angstroms)

. . . 2 3 4 EL: 6
the receding of the crack. For a given load, bond dis- Bonds along the crack propagation direction

tances across the crack plane show a very character- o
P y Fig. 5. Bond distances (in )Afor the crack on the (110) plane

istic narrow region, associated with the crack t'pwith a [110] crack front (large system) at different applied

where the bond distance changes abruptly from it§ads. The loading is indicated in the legend in unitsKt
value for the bonds in the strained area ahead of the Bond labels correspond to Fig. 2.
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3. SURFACE AND BULK PROPERTIES corresponds to a calculation in the same supercell,

with N, atoms, where the vacuum has been filled

with Si atoms in order to form a perfectly periodic
Table 3 summarizes the relevant bulk propertielsulk crystal. The weighted energy of the filled super-

calculated with our Si pseudopotential and the correell (E,.i/Noui) 1S then taken as the reference bulk

sponding experimental data. We have used a cubgnergy and the surface energy is defined as:

cell with eight atoms and a Monkhorst—Pack [%7]

sampling mesh of x4 to determine the bulk 1 Neia,

properties. The elastic constants have been determ- 7/22N"<EslabNblkEbulk) (4)

ined from fitting to the total energy or to the stress o !

[32] as a function of the strain for different distor-

tions. The values obtained from the two methods dif- .
whereN,, represents the number of atoms in the sur-

0,
fer by Iess_than 9'5/0' The agreement befcvyeen t.heqrélce unit cell, and the factor 2 accounts for the two
and experiment is very good. The remaining differ-

ences are common for the DFT-LDA approach W(seurfaces in the supercell.
are using [32]. 3.2.1. Si(111)-21 surface. The stable surface
To obtain good quantitative agreement with experistructure of the Si(111) surface fd=600 K is the
ment, the bulk properties are usually calculated witBx1 n-bonded chain Pandey reconstruction [36, 37].
a rather large cutoff energy of 200 eV. Extensive tesiBhis surface structure is formed during cleavage. The
on bulk properties and surface reconstructions shoanergy released during the bond breaking process
that the optimized pseudopotential still gives a goodllows the system to overcome the small barrier (0.03
description of Si with as low a cutoff as 96 eV [33].eV/surface atom [38]) between the Pandey and the
As an example, we show in Table 3 that the latticelaneman reconstruction [39], a relaxed structure
constant and bulk modulus of Si calculated with thevhich can be reached from the ideal (111) surface
96 eV cutoff compared well with the results for thewithout an energy barrier. The reconstructed surface
200 eV cutoff. For economical reasons, the rest of the modelled with a supercell containing a Si slab of
calculations in this work are performed with this cutthree {111} double layers of Si with two atoms per
off energy of 96 eV. layer to account for the> periodicity. This gives a
. . total of 12 atoms in the supercell. A vacuum region
3.2. Surface energies and reconstructions for the " .
Si(111) and Si(110) surfaces eququlerjt to three qlouble layer spacings (more than
10 A) is introduced in the [111] direction. The total
The standard method for calculating the surfacenergy is calculated using a Monkhorst—Pack (MP)
energyy is to evaluate the total energy of a superce[27] k-mesh of k4x2.
containing a slab with a thickness of a few monolay- An atomic configuration close to the Pandey
ers and two equivalent surfaces. The surface energgnded reconstruction was taken as the starting point
is often determined by subtracting the slab enerdipr the energy minimization. The structural details,
from the reference bulk energy, which is obtaineihcluding the buckling of the topmost atoms, agree
from a separate calculation using the bulk unit cellwell with other calculations [40]. The difference in
This procedure does not give accurate results [34, 3%leight of the two topmost atoms in the reconstruction
because the comparison of total energies from diffeis quite sensitive to the cutoff of the plane wave
ent unit cell calculations is only accurate if each oéxpansion. Our optimized pseudopotential produces
the calculations is fully converged in terms of cutofthe correct buckling with the 96 eV cutoff, while stan-
and k-sampling. However, total energgifferences dard pseudopotentials require a cutoff larger than 164
between calculations on the same unit cell, where ti@/ to recover the correct value.
same cutoff andk-sampling are used, are known to The relaxed surface energy per surface atom is
be much less sensitive to these factors. We hayg''=1.155 eV/atom (1.44 J/ffp This result has been
therefore followed this second approach and definexbtained using a supercell with the lattice parameter
the surface energy as the difference between thefor our Si pseudopotential. Calculations with the
total energy of two calculations in the same supercekxperimental lattice parameter change the surface
E..., cOrresponds to the slab, containiNg,, atoms, energy only by about 1%. Our surface energy lies
with two surfaces separated by a vacuum regify),.  between the value estimated from the sublimation

3.1. Bulk properties

Table 3. Lattice constant), bulk modulus B) and elastic constants of silicon. The results from our calculations with two different cutoffs are
compared to the experimental values taken from Ref. [31]

a(A) B (Mbar) Ci1 (Mbar) Co Cus
Experiment 5.431 0.992 1.66 0.64 0.80
Calculation (200 eV) 5.461 0.913 1.56 0.59 0.76

Calculation (96 eV) 5.446 0.928 1.53 0.62
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energy [3] (1.46 J//H) and the values from other cal- 2
culations, like non-self-consistent Harris functional
calculations with a local orbital minimal basis [25]

(1.34 J/n?) or an empirical tight-binding Green'’s 15 |

function approach [41] for an ideal unreconstructed = \'\.
surface (1.36 J/A).

3.2.2. Si(110) £1 surface. The supercell for the
calculation of the (110) surface contains a slab with § "
six (110) planes (two atoms per plane), and a vacuungs
equivalent to six (110) layers. The reference bulk
supercell contains 24 atoms in 12 (110) planes. The
total energy is calculated using a MRmesh of
1x4%2. 0

While the ideal bulk termination has two surface
atoms at the same height (each with a half-occupiec
dangling bond), the reconstructed surface showsggy. 6. Lattice trapping range<¢ in units of K&) as a function
characteristic buckling of these two topmost atom®f the crack tip position of the elastic field with respect to the
This symmetry breaking is accompanied by a transf@fomic positions for the (110)[0} crack simulated with the
of charge between the atoms in the surface unit cell. Medium size unit cell (see text and Fig. 4 for details).
The upper atom has a dangling bond occupied by two
electrons, while the dangling bond of the lower atom 2 i i
remains empty. This Jahn-Teller distortion opens a
gap — the ideal surface with the two equivalent half-
occupied dangling bonds is metallic — and further ;|

s Intens

0.5

A B C
Crack tip position

stabilizes the surface structure. 2 e o
The surface energy i$'%=1.134 eV/atom (1.733 2

Jin?). This value is between the few measurements2 ;

quoted in the literature (1.51, 1.90 Fnsee Ref. 5 - - .

[25]), and is close to the value of 1.69 ¥wbtained §

for an ideal unreconstructed surface with the empiri-&

o
o

cal tight-binding Green'’s function approach [41].

In agreement with experimental findings (see the
values quoted in Ref. [25]), the surface energy of the
(110) surface is larger than the surface energy of the s M L

111) surface. . .
(111) Unit Cell Crack Size
Fig. 7. Lattice trapping rangeKf in units of K&) as a function
4. RESULTS FOR FRACTURE SIMULATIONS of the size of the unit cell used to simulate the crack propa-

. - gation for the (110)[1Q] crack. S, M and L correspond to the
4.1. (110) Crack with 110] front small, medium and large systems for that crack orientation (see

The (110)[1_0] crack is taken as the test case fop'able 1 and Fig. 2) The sjngularity of the crack (_elastic‘f_ield

. . . ... _Is located at position B with respect to the atomic positions
which the influence of system size and of the position (see Fig. 4).
of the centre of the elastic field is determined. Follow-
ing the procedure described above we have determ-
ined the values oKy for the medium size system andsmall and the medium size system. This change is of
three different positions of the crack tip (see Fig. 4)the order of the accuracy of the calculations which,
The results are summarized in Fig. 6. When the origiim this respect, is determined by the interval (0.05
of the elastic field is moved across the crack tip bonK) by which the loads are changed.
from A to C, the upper and lower critical load§ The bond breaking and healing processes in the
are both shifted to lower values. However, the lattic€l10)[110] crack system are characterized by a pro-
trapping range\K=0.5 remains almost constant. Thisnounced change of the length of the crack tip bond
indicates that the absolute valueskifdepend on the as described in Section 2. The bond breaking process
location of the centre of the elastic field but the latticeipon loading is analysed in more detail by comparing
trapping range does not. Since our main emphasis wiie bond distances across the crack plane for the
be put on the latter, the choice of the centre of thmedium and large systems in Fig. 8. Both systems
elastic field is more or less arbitrary. For the rest ochow the same general behaviour at the same value
this study it is always located at position B. of the stress intensity (1.30-1.3&). However, the

The dependence dfi on system size is shown in bond length of bond no. 4 before breaking is larger
Fig. 7. The values oK} are the same for all the sizes,in the smaller system (3.3 )Aas compared to the
except for a small change of 0.0&° between the larger system (3.0 A Similarly, the abrupt increase
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(110)-[1-10] Crack: Medium vs Large system  nation of Kf more complicated andk: not unique.

70 = ‘ One has to find a critical distance at which the bond
ous is considered broken. The bond distances in this crack

60 o135 system appear to change most significantly after a
A bond length of 3.5 Ahas been overcome. With this

criterion, the value oK;* changes from 1.35 to 1.30
KF as the system size is increased from the medium
to the large system. Howeve; , associated with the
healing of bond no. 3, is then equal to 1.B9 for
both sizes. If instead the critical bond distance of the
medium size (110)[10] crack system is used, all
values drop by 0.0KE. Consequently the lattice trap-
ping range is not affected by the definition of the criti-
: s cal bond distance and drops fro&kK=0.35 to 0.3
Bonds along the crack propagation direction upon increasing the system size from the medium to
Fig. 8. Comparison of the bond distances Zihaﬁs a function the Iarge system. ; ; ;
ofgétréss intensity factor for the medium (dashed lines, ope The mﬂuen(.:e of .SyStem Slze.on this crack is also
symbols) and large (continuous lines, filled symbols) systenOWn dramatically in the behaviour of the system for
with the (110)[1D] orientation. loads above 1.3KF: in the large system, the crack
propagates further and breaks the next bond (bond no.
5), while the crack in the medium size system does
in bond length of bond no. 4 at a load of 1.B5 is not break bond no. 5 even at XK§. The atomic con-
more pronounced in the larger system. This reflecfgyurations for the large system, shown in Fig. 11 for
the less flexible boundary conditions on the crack tiptress intensity factors of 0.95, 1.20, 1.35 and 1.40
atoms in the smaller systems. Irrespective of thes€’, illustrate these findings.
deta_lls, the entire bond breaklng process is clearly d|§53_ (111) Crack with{oT1] front
continuous at all system sizes. ~
The atomic configurations immediately before and The (111)[01] crack system was studied only in
after the breaking or healing of the crack tip bond arthe medium system size. The cracks in this system
shown in Fig. 9. Note that the breaking of the bondbehave qualitatively like the (110)[001] cracks. The
is accompanied by significant relaxations of the subond distances across the crack plane, displayed in
rounding atoms. Both crack surfaces show the buckig. 12, also increase continuously with increasing
ling, characteristic of the reconstructed (110) surfacetress intensity. Depending on the critical bond dis-
The differences between the medium and large sysnce for breaking, the upper and lower lattice trap-
tems for bonds no. 1 and no. 2 are related to thiging limits are 1.25 (or 1.2K® and 0.90 (or 0.85)
reconstruction of the crack surfaces. The atoms in th¢. The lattice trapping range is agakkK=0.35.
lower surface correspond to different buckling orien- The atomic configurations at different stress inten-
tations in the medium and large system as shown 8ity factors (1.20 and 1.25, 1.3Qf) are shown in
Fig. 2. It is quite remarkable that the different buck¥ig. 13. For bond distances larger than 5the frac-
ling does not significantly influence crack stability.ture surface already develops the Haneman “buckled
This is further confirmed by a calculation where oneow” reconstruction. This result agrees with a pre-
of these atoms is kept fixed at the position given byious analysis of this reconstruction as a function of
anisotropic elasticity and its dangling bond saturatetthe gap distance between the two (111) surfaces [25],
with a hydrogen atom. Even such changes do not altehich showed that surfaces do not reconstruct for gap
the general behaviour or the critical loads. This inserdlistances smaller than 4. ‘6 For distances larger than
sitivity also explains the very similar results which4.6 A the Haneman reconstruction was observed, and
are obtained for the small system where all theseis only for significantly larger distances that the
atoms are kept fixed during the relaxation. Pandey reconstruction becomes the total energy mini-

4.2. (110) Crack with [001] front mum.

The behaviour of the (110)[001] crack differs sig-
nificantly from one with the perpendicular propa-
gation direction considered above. Here, the bond Fracture processes and the stability of cracks in
breaking process is best described by a “continuoustystal lattices have so far mainly been studied by
variation of bond distance with the increase in stresmpirical atomistic simulation schemes. For silicon
intensity (see Fig. 10). The bond distance of bond nthis has been done with very simplistic model poten-
4 continuously increases from 3.13 to 4. i3with tials [4] and more recently also with supposedly more
increasing stress intensity. This same general behadvanced Stillinger—Weber potentials [21]. To the
iour is observed for both the medium and large sydest of our knowledge, there has previously only been
tem. This continuous behaviour makes the determbne single study of a crack in silicon by more

o
o

Bond distance (angstroms)
»
>

@
o

2.0
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5. DISCUSSION
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Fig. 9. Atomic configurations (the crack front direction is normal to the plane shown) for the crack on the

(110) plane with a [1Q] front with different values of the stress-intensity factor: 0.90, 0.95, 1.30 and 1.35

KE. These values correspond to the configurations inmediately before and after the breaking of one of the
bonds and the advance of the crack. The broken bonds are marked with dashed lines

7.0 ¢ Sinclair, in his pioneering work [4], explored the
influence of the interatomic interaction, described
with several simple empirical potentials, on the lattice
trapping. He used flexible boundary conditions, where
the elastic strain parameters were taken as variables
in the minimization process, together with the atomic
coordinates in the atomistic region. Sinclair found a
lattice trapping rangdK=~0.3-6.0, depending on the
model potential used. The larger values were obtained
with force laws of shorter range. In comparison with
our value ofAK=0.35 for the (111)[01] crack sys-
tem it is obvious that a rigid short range interaction
model can not quantitatively account for the crack tip
stability in any sense.

The calculations of Spencet al [25] differ from
Fig. 10. Same as Fig. 5 but for the crack on the (110) plangye ones presented here mainly in the quantum mech-

with a [001] front. Bond labels correspond to Fig. 3. . . .

anical method used for the calculation of the atomic
forces. They used a non-self-consistabtinitio tight-

advanced quantum mechanical descriptions. Thidnding method, based on the Harris functional, with
study by Spenceet al [25] focused on the a minimal local orbital basis. Our calculations use a
(111)[01] crack system only. Our results for theplane wave basis and are fully self-consistent, which
(111)[011] crack system are compared with these presrovides complete freedom in the determination of
vious studies below. the extension and symmetry of the wavefunctions.

d
)

o
o

>
)

Bond distance (angstroms)
©
o
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1 2 3
Bonds along the crack propagation direction
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Fig. 11. Atomic configurations (the crack front direction is normal to the plane shown) for the crack on the

(110) plane with a [001] front with different values of the stress-intensity factor: 0.95, 1.20, 1.35 and 1.40

K®. The bonds which are broken during the loading process are labelled 3-5 (see Fig. 10). Broken bonds are
marked by dashed lines. The origin of the elastic crack field is in the middle of bond no. 4.

7.0 the bond breaking and healing loads directly by
® - @0.750 . .
»—a0s00 relaxing the entire structures, they computed the
6.0 A—400 energy barrier to crack advance for different values
MNERGPeS of the stress intensity factor and extrapolate linearly
oo to zero barrier height to determin€". The energy
50 o140 barriers were determined by computing the total
100 energy for structures which interpolate linearly

between two fully relaxed atomic configurations, cor-
responding to two different positions of the crack tip
separated by one atomic increment (one more broken
bond). Methodologically their procedure may lead to
reasonable estimates for the barrier heights but our
20 : 5 : s 5 method should give more accurate values for the stab-
Bonds along the crack propagation direction ility limits. At similar system sizes, the magnitude of
Fig. 12. Same as Fig. 5 but for the crack on the (111) planthe lattice trapping range of th-eir calculation
g.with. a [011] front. Bond labels correspond to Fig. 13. EAK%O'36) agrees extremely well with our value of
AK=0.35 for the (111)[01] crack system. There are,
however, some diff_erences between their neutral load
Some further differences are the use of isotropic &'*“"®'= 0.45 MPa/m, which is defined as the centre
anisotropic elastic displacement fields as boundagf gravity of the stability regime, and the Griffith load
conditions and somewhat different methods to detete  which  we have normalized our data
mine the lattice trapping range. Unfortunately, the dif(K® = 0.40 MPa/m). As a consequence, the absolute
ferent methods to determine the stability range of thealues of the loads are slightly different. However,
crack can hardly be compared. While we determinthese differences are well within the range in which

Bond distance (angstroms)

w
[S)
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the boundary conditions may affect the absolute valtains 48 Si atoms, of which only 14 are allowed to
es. relax, provides a reasonable estimate of the lattice
A second interesting detail in the comparison ofrapping range. The changes in charge density with
the calculations of Spencet al [25] with the study stress intensity factor provide an explanation for this
presented here is the dependence of the stability rangehaviour. Fig. 14 shows the charge density in a plane
of the crack on system size. For the (110)[001] craclperpendicular to the crack front direction through the
which shows the same “continuous” bond breakingrack tip bond for different stages of the loading pro-
process as the (111)[QL crack system studied by cess for the medium size (110)[Jicrack. Marked
Spenceet al, we have found a decrease in the latticehanges in the electronic distribution are confined to
trapping range with increasing system size. They alswo of the bonds. The one which is breaking and the
find a similar decrease with system size. Howevepne immediately above. At a load of 1.K%, clearly
they have addressed the effect of system size withglow the critical load, both bonds are significantly
flexible boundary condition scheme and used a unjjeakened to a similar extent. Both do not have a
cell with 324 atoms divided into two regions: themaximum in the charge density in the centre of the
inner region corresponds to the 120 atoms, whichond. As the critical load is approached, the upper
have been used in the fixed boundary calculations ag@nd is recovering charge density at the expense of
is treated using theb initio tight binding method. the crack tip bond and is fully intact again at 1.35
The outer region is described by the empirical Tersofke, consequently, it appears that a significant part of
potential. The outer boundary of this region is kepfhe |attice trapping in the (110){D] crack system is

fixed at the elastic solution, while the boundarygsed by the load sharing between the crack tip bond
between the two atomistic regions is flexible, and iSnd the one above.

determined through a series of minimization steps.

These “flexible boundary’l’ calculations gave a slightly.onnected to large lattice trapping should result in a
.d|fferen.t value forKpeer='=0.47 MP@/m but most relatively high fracture toughness. In contrast, the
interestingly also gave a decrease in the lattice rapgniin,ous bond breaking and a small lattice trapping
ping range to onIyAK_w(_).Z?. ) . range should lead to low fracture toughness and easy
Qne of the most S”'.k'r.‘g observations in our calpu- ropagation of the cracks. Consequently, the calcu-
lations are the two distinct types of bond breakin éions predict a pronounced anisotropy with respect

processes: a continuous process without Pronouncelerack propagation in different directions on the sili-

structural relaxations and a clearly discontinuoug (110) plane. This is in contrast to the thermodyn-
abrupt bond breaking event. The continuous process

which is observed for both the (111)[fland the aric Griffith picture where a difference with respect
(110)[001] crack systems, mimics what one Wouléo the propagation direction should only come from

expect from continuum theory and therefore result%laétIC anltsotr?ﬁy. lculated fi isot
only in a relatively narrow lattice trapping range. Th omparing the calculaled propagation anisotropy

magnitude of the trapping range decreases up or {110} cleavage to fracture experiments [16, 42]

increasing the system size, as detailed above and |§i§(_eem_s as if‘:ch_e _agrtiement i_s on!y ql_JaIitative. Prppa—
also found by Spencet al. [25]. Consequently, the gatlor! in the dlff.ICU|t. (001 direction is ngt seen in
trapping in the continuous process may partly pEXxperiments, Whlc_h_lnstead show a_de\_/latlon of the
regarded as an effect of the limited system size. Off&ack from the original plane onto inclined planes,
may then conjecture that the trapping range couwh'le CI’«'_iCk prppagatlon contlnut_as on the {110} plane
decrease further upon increasing the system size fbthe simulations. However, this may well be con-
macroscopic dimensions. In either case, the low lafected to the boundary conditions imposed on the
tice trapping leads to relatively easy propagation gmall atorm;nc simulation cell which do.n.ot favour
cracks in directions in which this continuous bonduch deviation of the crack from the original crack
breaking occurs. In contrast, the discontinuous pré/ane. o .
cess is clearly connected to structural rearrangementsT© assess the possibility for the crack to deviate
in the immediate neighbourhood of the crack tipfrom the original (110) plane, one can compare the
Comparing the different system sizes, it is appare@Pening stress intensity on the (111) plane inclined
that the lattice trapping is mainly a result of the relaxPy ©=35.3 with respect to the (110)[0] crack with
ations of the six to eight atoms immediately surroundhe fracture toughness of the (111){} crack system.
ing the crack tip. The magnitude of the trapping rangé&he inclination of course decreases the opening stress
therefore does not change with system size even fifitensity compared to the opening stress intensity on
very small systems. The magnitude of the lattice traghe original (110) plane, however, the large lattice
ping range connected with this discontinuous bontiapping in the “difficult” (110)[110] crack system
breaking event AK=0.5) is significantly larger than just compensates this decrease. At the upper lattice
the trapping range from the continuous process. trapping limit of the (110)[10] crack system the
The lack of dependence of the trapping range oppening stress intensity on the inclined (111) plane
system size in the (110)[D] crack system is truly is Kee(35.3) = 1.0XK{i1ymo The finding that the
remarkable. Even the small system, which only corerack did not deviate, although in principle it could,

Experimentally, the discontinuous process which is
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K=1.25

Fig. 14. Charge density plots in a plane perpendicular to the crack front for the medium size fm]l@bﬁhk
for three different values of the stress intensity factor (1.25, 1.30 andKIZB5Contours are in units of 16
electrons/A.

most certainly has to be attributed to the small sizsities calculated here. This should probably rather be
of the system. attributed to the imperfect crack tip geometry and to

The inclined crack of course also experiences imperfections in the measured fracture toughness than
mixed mode (opening and shear) loading, which actie possible deficiencies of the calculation, because
ally exerts a higher driving force on the crack thamynamic fracture experiments indicate that the con-
just the opening component. However, the influenceumed energy may be as low as 2.5%fan the (111)
of the mode mixity on the lattice trapping is com-cracks [43] and 3 J/ifor the (110) cracks [42],
pletely unknown until today and must be deferred tavhich is in excellent agreement with our calculations.
future investigations, which probably require largefhe second aspect raised by the static experiments
system sizes as well. Another aspect which must al§b4] is which of the cleavage planes of silicon is actu-
be deferred to future investigations is the way irlly the preferred cleavage plane. Our calculations
which the lattice trapping barrier can be overcomeshow a slight preference of the (111) cleavage plane
The lattice trapping barrier of a crack can be viewechainly due to its lower surface energy but similar
like the Peierls barrier of a dislocation. In analogy t@ase of bond breaking for the (110)[001] and the
dislocation motion it should therefore be possible t¢111)[011] crack systems. However, since the differ-
overcome this barrier by the thermally activated gerences in the surface energies are not very pronounced
eration and motion of kink pairs in the crack front athis result has to be regarded with some caution.
elevated temperatures. The energetics of this kink pé@pecifically, since the absolute values of the lattice
nucleation process is as yet largely unknown and theapping for the “easy” directions still seem to depend
study of kink pair formation in a crack front is anon system size and therefore remain somewhat
important topic for future investigations. unclear.

In the comparison to experiment there are two One of the important side aspects of the present
further aspects to be discussed: the first is the magealculations is that thab initio calculations presented
tude of the critical stress intensity at fracture. Experirere can also provide the basis for the development of
mental values from static experiments [14] are almo$uture improved empirical potentials for silicon. The
a factor of two higher than the critical stress intenresults of the crack tip calculations probe the atomic
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bonding during the breaking process in a range of-
distances which is hardly accessible to other calcus
lations and which clearly is of importance for the
study of mechanical processes. The calculations.
therefore can be used as benchmark data which have
to be reproduced by a simpler interaction model i
an improved potential is to be used in mechanically,
distorted environments.

6. CONCLUSIONS 15.

Our total-energy pseudopotential calculations sho
that the bond breaking processes at a crack tip can
have very different character. The bond breaking carv.
be continuous — almost as expected from continuum
mechanical considerations — or discontinuous. T
discontinuous process is clearly connected to atom-
istic relaxations and rearrangements of only a fewo.
atoms around the crack tip. This can partly be unde#d.
stood as a result of some load sharing between the
crack tip bond and the neighbouring bond. The dis-
continuous process results in a rather large latticg.
trapping as compared to the continuous bond breaks.
ing event. 25.

One important consequence of the difference in t
bond breaking behaviour is that it introduces an ani-
sotropy with respect to the propagation direction of a7.
crack on one and the same cleavage plane. While
bonds break continuously and cracks propagate east
on the {111} plane and the {110} plane if crack,
propagation proceeds in tH&10) direction, a large
lattice trapping prohibits crack propagation ifG1)  30.
direction on the {110} plane. These differences can
explain the experimentally observed anisotropy witA®
respect to propagation direction in silicon single crys;,
tals.
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