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AN AB INITIO STUDY OF THE CLEAVAGE ANISOTROPY IN
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Abstract—Total-energy pseudopotential calculations are used to study the cleavage fracture processes in
silicon. It is shown that bonds break continuously and cracks propagate easily on {111} and {110} planes
provided crack propagation proceeds in thek1̄10l direction. In contrast, if the crack is driven in ak001l
direction on a {110} plane the bond breaking process is discontinuous and associated with pronounced
relaxations of the surrounding atoms. The discontinuous process is partly a result of some load sharing
between the crack tip bond and the neighbouring bond, which results in a large lattice trapping. The different
lattice trapping for different crack propagation directions can explain the experimentally observed cleavage
anisotropy in silicon single crystals. 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

The macroscopic failure of materials is ultimately
determined by events on the atomic scale. This is
particularly clear in the case of brittle fracture, where
the crack at its tip must be atomically sharp and break
the bonds between atoms. Such a brittle crack can
therefore be regarded as a macroscopic probe for the
atomic bonding.

Following Griffith [1], one may regard the static
crack as a reversible thermodynamic system for
which one seeks equilibrium. This equilibrium con-
dition leads to the so-called Griffith criterion, which
balances the mechanical energy release upon crack
advanceG with the energy required to create the two
new surfaces 2g. Although the Griffith criterion,
G = 2g, is often regarded as a fracture criterion, it is
important to note that it is only a necessary condition
for fracture and not sufficient. Nevertheless the Grif-
fith criterion leads to two important conclusions: (1)
crystal lattice planes with low surface energies are
energetically favoured as cleavage planes, and (2) a
given cleavage plane will have a single unique value
of G. A perfectly brittle crack in a crystal is therefore
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expected to choose a cleavage plane with low surface
energy and to propagate on this plane with equal ease
in all directions.

From an atomistic point of view the situation is
somewhat different. The first atomistic studies
showed that the discreteness of the lattice manifests
itself in the so-called lattice trapping effect [2, 3]. In
a crude continuum analogy, lattice trapping can be
interpreted as if the surface energy was oscillating
with a period of the atomic distance. Lattice trapping
causes the crack to remain stable and not to
advance/heal until loads somewhat larger/smaller
than the Griffith load are reached. It has been shown
that the magnitude of the lattice trapping effect
strongly changes with the bonding characteristics [3–
6]. Later studies showed that the lattice trapping may
even depend on the direction in which the bonds are
broken and therefore be very different for crack
propagation along different crystallographic direc-
tions on one cleavage plane [7–9].

Semiconductors, particularly silicon, are materials
that may be suitable to test the perfectly brittle case
experimentally. Silicon can be produced as a virtually
dislocation-free single crystal and crack tips have
been observed in the transmission electron micro-
scope to propagate in the absence of dislocations [10,
pp. 79–142]. Silicon has been studied extensively for
its fracture characteristics [11–15]. The results of
these studies are summarized for example in [16]. In
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short, silicon is reported to have two principal cleav-
age planes: {111} planes, usually the easy cleavage
planes [16], and {110} planes, the planes of easy
cleavage in polar III–V semiconductors [14–17],
which in silicon can only be obtained under specific
conditions for the propagation direction [14]. It is not
clear which of the planes has the lower fracture
toughness K. The most accurate constant-K
experiments [14] seem to show that
{110} planes have a slightly lower fracture
toughness (Kc

110 = 0.89 MPa√m) than {111} planes
(Kc

111 = 0.92 MPa√m). Different crack propagation
directions have been studied for both crack planes:
thek110l andk211l directions for {111} cleavage and
the k110l and k111l directions for {110} cleavage
[16]. The k110l propagation direction was seen to be
the easy propagation direction for both cleavage
planes. One orientation which was not reported in
[16], the k100l propagation direction on the {110}
plane, could not be cleaved [9]; the cracks were
observed to deflect out of the {110} onto the {111}
planes. This indicates a very strong cleavage ani-
sotropy with respect to the propagation direction on
the same cleavage plane. Such an anisotropy has also
been reported for cleavage fracture in tungsten single
crystals [8].

Atomistic modelling of cracks is a rather compli-
cated problem because both the long range linear
elastic interaction, characterized by the 1/√R singular-
ity in the stress field, and the short-range chemical
interactions, which are responsible for the atomic
scale breaking of bonds at the crack tip, are needed
for a correct description of the problem. Changes of
the atomic positions at the crack tip will be carried
far away by the weak singularity. To properly handle
the boundary conditions for the atomistic region, sev-
eral schemes which combine an atomistic region with
a flexible continuum region have been developed [7,
18–20]. The boundary conditions from the field of an
elastic crack can then be imposed on the outer border
of this continuum region. Apart from the difficulties
involved in the transition between the lattice and the
continuum and the application of the boundary con-
ditions, the description of the interactions in the atom-
istic region is a problem in itself. The large number of
atoms involved requires a simple and computationally
efficient description of the atomic interaction. There-
fore, empirical atomic potentials are usually used for
fracture simulations. These empirical interatomic
potentials are fitted to bulk properties and may then
reproduce these properties well. However, the atomic
coordination close to the crack tip differs substan-
tially from the bulk environment. The applicability
of these empirical potentials for crack simulations is
therefore, at least, questionable.

Recently, Holland and Marder [21] have demon-
strated very clearly the limits of these empirical
descriptions for the application in fracture simula-
tions: they had to manipulate the three-body term of
the Si Stillinger–Weber potential [22] in order to

obtain crack propagation in Si in their molecular
dynamics simulations. Of course, this introduced
unwanted changes to the bulk properties of the poten-
tial. We have experienced similar problems in our
attempt to simulate crack propagation in Si with the
Tersoff potential [23]. Despite the fact that this poten-
tial is apparently able to describe structures with
atomic coordination quite different from the bulk dia-
mond lattice, like surface reconstructions, our simula-
tions showed unphysical structural transitions at the
crack tip. These are attributed to the extremely short-
range character of the interaction.

In the absence of a simple and yet reliable model
for the interaction, two different approaches can be
followed. One way is to retain a large atomistic
region and treat the atomic interaction as a free para-
meter which can be modified in order to identify the
relevant features that influence crack propagation.
Alternatively, one can compromise on the size of the
system and concentrate on the quality of the descrip-
tion of the atomic interaction. Total-energy pseudopo-
tential methods, based on density functional theory
(DFT) and the use of a plane-wave basis set, have
been known since the early 1980s to provide a very
accurate description of the structural and energetic
properties of solids. The size of the systems that one
could study with those methods was limited to tens
of atoms, mainly due to the poor system size scaling
of the time needed for the diagonalization of the ham-
iltonian. Recent methodological advances, in parti-
cular the development of iterative minimization tech-
niques [24], and the use of parallel computers have
now made it possible to study systems containing
hundreds of atoms with quantum mechanical
methods. This opened the way to extend the applica-
bility of quantum mechanical methods to the study of
the mechanical properties of materials. Taking advan-
tage of these methods it is today possible to study
the structure of the crack tip during crack propagation
usingab initio methods to describe the atomic inter-
actions.

The purpose of this paper is to follow this second
route and to analyse in detail the bond breaking pro-
cesses at crack tips in silicon. The analysis is based
on ab initio methods which can accurately describe
the non-linear forces acting on the crack tip atoms. A
full quantum mechanical study is necessary to capture
the details of the bond breaking process and of the
subsequent reconstructions of the internal surfaces of
the crack. Earlier work along this same direction was
reported by Spenceet al. [25]. They used a non-self-
consistentab initio tight-binding method to study the
lattice trapping for cracks on the (111) plane with a
[01̄1] front. In our case, more elaborate total energy
pseudopotential methods [24] are used to study differ-
ent propagation directions on the (111) and (110)
cleavage planes. A fixed boundary approach is used
to enforce the elastic boundary conditions rep-
resenting the crack field. Particular attention is payed
to the influence of the fixed boundary by studying the
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scaling of the results with system size and the changes
with the relative position of the singularity in the elas-
tic field of the crack and the atomic position of the
crack tip. We have also determined the surface ener-
gies, g, for the (111) and (110) cleavage planes. To
the best of our knowledge, this is the first calculation
using first-principles methods of this key ingredient
in the analysis of the crack stability.

The results presented here, although limited by the
approximations made, provide a basic understanding
of several experimental features of crack propagation
in Si. In particular, they show that lattice trapping is
important for crack propagation and that lattice trap-
ping provides a straightforward explanation for the
experimentally observed anisotropy with respect to
propagation direction. These detailed studies may
further be used to guide the development of simpler
semi-empirical atomic interaction models, which have
so far failed to give an accurate description of the
crack tip.

The rest of paper is organized as follows: Section
2 is devoted to the description of the different crack
systems, the model used to describe the cracks with
ab initio methods, and the procedure we use for the
determination of the lattice trapping range. Section 3
presents the structural and energetic properties of both
bulk and low-index Si surfaces, with special attention
to the determination of the surface energies obtained
with our pseudopotential. The results for the stability
of the different crack orientations are introduced in
Section 4 and their relevance to the understanding of
the experimental results is discussed in Section 5. The
main conclusions and the perspectives for future work
are summarized in Section 6.

2. METHODOLOGY

2.1. Crack geometry

The goal of this study is to determine the stability
of cracks with different propagation directions on the
(111) and (110) cleavage planes. In particular, the
(110) cracks with [001] and [110̄] fronts ([11̄0] and
[001] propagation directions, respectively) and the
(111) crack with a [01̄1] front ([2̄11] propagation
direction) are considered. In the following, the crys-
tallographic orientation of the crack system is speci-
fied by the orientation of the crack plane and of the
crack front as: (plane)[front].

To study crack tips atomistically it is necessary to
provide the atomistic region with the appropriate
boundary conditions from the elastic field of the
crack. Within linear elastic continuum theory, a sharp
straight crack is characterized by the stress fields
and the displacement fieldu:

sn =
KM

√R
aM
n (Q) (1)

un = KM√RbM
n (Q) (2)

Fig. 1. Illustration of the boundary conditions used in our simu-
lations. The atoms outside of the dashed line are kept fixed
during the relaxation process, while the inner atoms are

included in the atomic relaxation.

whereR is the distance from the crack tip.n labels
the different stress components and M stands for the
opening, the shearing or the tearing mode of loading.

a andb are functions of the angleQ betweenR
→

and
the crack plane; they further include the crystallo-
graphic orientation of the crack system via the appro-
priate elastic constants. The functionsa and b are
calculated within anisotropic linear elasticity theory
[26]. The applied external load and the geometry of
the crack are contained within a single multiplicative
factor, the stress intensity factorKM, which thereby
characterizes the “strength” of the stress field. More
details about the stress field and the energetics of the
crack are given in Section 2.3.

The starting configuration of the atoms is given by
the anisotropic elastic displacement field for the start-
ing stress intensity factorKin

I . Only mode I (opening
mode) loading is considered here. The atomistic
region around the crack tip has dangling bonds at the
outer surface. These dangling bonds are saturated
with H atoms, as shown in Fig. 1 for the (110) crack
with a [11̄0] front. It was found that all the bonds of
Si atoms which are partially saturated with hydrogen
atoms are somewhat less stiff than the bulk Si–Si
bonds. Therefore, not only the outermost Si atoms but
the positions of the outermost two layers of Si atoms
are kept fixed at the positions given by the linear elas-
tic solution (see Fig. 1). The other atoms are relaxed
using a conjugate gradient minimization and an ab
initio method to determine the total energy and the
forces. The system is relaxed until a stable crack tip
structure is obtained.
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Table 1. Relevant crystallographic information for the different crack systems considered. The crystallographic orientation of the crack systemsis
given together with the dimensions in the propagation direction, normal to the crack plane and along the crack front (in units of the bulk lattice
parameter for the eight-atom simple cubic cell), the number of Si and H atoms in the unit cell, and the extra length (in A˚ ) added to the dimensions

in the propagation direction and normal to the crack plane to determine the supercell lattice vectors

Crack orientation Dimensions No. of atoms Vacuum size
(plane)[front] Si+H (Å)

(110)[11̄0] small 6/2 × 2√2 × √2/2 48 + 30 10, 14
(110)[11̄0] medium 7/2× 5/2√2 × √2/2 68 + 34 9, 13
(110)[11̄0] large 8/2 × 6/2√2 × √2/2 96 + 42 11, 14
(110)[001] medium 2√2 × 2√2 × 1 64 + 32 9, 14
(110)[001] large 3√2 × 3√2 × 1 144 + 48 9, 14
(111)[01̄1] medium 3/2√6 × 2√3 × √2 70 + 26 10,13

Periodic boundary conditions are applied along the
crack front direction to simulate plane strain con-
ditions. Periodicity is also enforced both in the crack
propagation direction and the loading direction. How-
ever, in these directions the supercell size was chosen
larger than the size of the atomic system to avoid the
interaction between the atoms in neighbouring cells.
The supercell size was chosen large enough to assure
a distance of more than 10 A˚ between atoms in the
periodic cells even for the largest loads.

To determine the influence of the size of the atom-
istic region on the stability of the cracks we have
studied the variation of the lattice trapping range with
system size for the cracks on the (110) plane. Table
1 summarizes the relevant crystallographic infor-
mation for the different systems we have considered:
the dimensions in the propagation direction, normal
to the crack plane, and in the direction of the crack
front (in units of the bulk cubic lattice parameter) are
given together with the number of Si and H atoms in
the unit cell, and the extra length added to the dimen-
sions in the propagation direction and normal to the
crack plane to determine the supercell lattice vectors.
Figures 2 and 3 show the relaxed atomic configur-
ations of the crack tip atoms of all (110) crack sys-
tems at a load where all the systems are stable.

The use of fixed boundary conditions for the atom-
istic region may affect the stability range of the crack
because the elastic field is not allowed to readjust to
the changes in the atomic coordinates near the crack
tip. Idealized flexible boundary conditions would
move the singularity of the stress field together with

Fig. 2. Relaxed atomic configurations for the different systems sizes of the (110)[110̄] crack at a stress intensity
factor of KI = 1.20KG

I , where all systems are stable. Details of the different systems are given in Table 1. The
bonds across the crack plane are labelled 1–6 for further reference. Dashed lines correspond to broken bonds.

the crack tip in the crack propagation direction as the
atomic bond breaks and the crack advances. To check
the influence of the fixed boundaries on the stability
range of the crack, the stability of the medium size
system for the (110) crack with [110̄] front was stud-
ied for three different positions of the crack tip with
respect to the atomic bond. The different positions are
shown in Fig. 4. For the (110)[001] and (111)[011̄]
cracks, where the bonds are perpendicular to the crack
plane, it is assumed that the crack tip is located in
the middle of a bond.

2.2. Computational method

The energies and atomic forces were calculated
within the local density approximation (LDA) to DFT
in its plane-wave pseudopotential formulation [24].
Within DFT the determination of the ground state of
a system of many interacting electrons and ions is
mapped onto a single particle problem with an effec-
tive one-body hamiltonian. This hamiltonian contains
the usual kinetic energy, ion–electron and Hartree
interaction terms plus the so-called exchange–corre-
lation contribution. The exchange–correlation func-
tional is not known exactly, but approximated by the
LDA, which usually provides a very good description
of the structural and energetic properties of solids.
Pseudopotential theory replaces the strong electron–
ion Coulomb interaction potential with a much
weaker pseudopotential, which effectively includes
the Pauli repulsion of the valence and the core elec-
trons.

The supercell approximation allows one to deal
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Fig. 3. Same as Fig. 2 but for the (110)[001] crack system.

Fig. 4. Different positions of the centre of the elastic field of
the crack with respect to the atomic coordinates that have been

studied for the (110)[110̄] crack.

with arbitrary atomic configurations within the frame-
work of Bloch’s theorem. The electronic wave func-
tions are expanded in terms of a discrete plane-wave

basis set, exp[i(
›

k + G
→

) r
→

], where
›

k is a vector in the

Brillouin zone andG
→

is a reciprocal lattice vector.
The number of plane waves included in the calcu-
lation is characterized by the cutoff energy,Ecut: only

plane waves with kinetic energy ("2/2m|
›

k + G
→

|2

smaller than the cutoff energy are included in the cal-
culation. This truncation of the plane wave basis leads
to errors in the total energy. However, these errors
can be controlled directly via the cutoff energy. The
sampling of the Brillouin zone is performed using a
Monkhorst–Pack

›

k-mesh of 1×1×4 (two inequivalent
›

k points) [27].
The search for the ground state of the electronic

system for a given atomic configuration is performed
with a direct, completely self-consistent second order
search for the minimum of the electronic energy func-
tional, using a conjugate-gradient method. Once the
electronic ground state is known, forces on the differ-
ent atoms are calculated and the atoms are relaxed
using a conjugate-gradient minimization. This relax-

ation of the electronic system and the atoms is
repeated until the total energy is converged to 1024

eV/atom and the forces fall below 0.01 eV/A˚ (0.016
nN) on every atom.

The computational cost of the iterative minimiz-
ation techniques used to determine the ground state
electronic energy scales withNPW, the number of
plane waves asNPW ln NPW, with NPW~E3/2

cut. It is
therefore important to keep the cutoff energy as low
as possible, without compromising on the quality of
the description provided by the pseudopotential. An
optimized non-local pseudopotential [28, 29] has
been used here for silicon. Thep and d components
of the potential are made similar and optimized to
make the pseudopotential rapidly convergent with
respect to the cutoff energy in the plane-wave expan-
sion. The pseudopotential was applied in a separable
form, taking thep component as reference and includ-
ing only the s non-local component. The projection
of this component was performed in real space [30].
This pseudopotential provides a good description of
the structural and energetic properties of Si, as shown
in Section 3. A bare Coulomb potential is used for
hydrogen.

2.3. Determining lattice trapping

2.3.1. Method for loading/unloading. The Grif-
fith model provides the starting point for our analysis
of crack stability. The Griffith stress corresponds to
the exact balance between the energy stored in the
elastic field of the crack and the energy needed to
create the two fracture surfaces. From linear aniso-
tropic elasticity, it is known that the stored elastic
energy,G, is proportional to the square of the stress-
intensity factor K2

I . Only mode I (opening mode)
loading of the crack is considered here. Calculated
surface energies are used to determine the values of
KG

I which satisfy the Griffith criterion for the different
crack orientations. Table 2 provides all the relevant
information for this analysis, including the values of
K2

I /G (related to the crack geometry and the elastic
constants of the material), the surface energy and the
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Table 2. Relevant information characterizing the crack systems. The values ofK2
I /G reflect the elastic anisotropy. The calculated surface energies

(in units of eV/Å2 and J/m2) are needed to calculate the critical stress intensity factorsKG
I

Crack orientation K2
I /G Surface energy KG

I

GPa eV/Å2 J/m2 MPa√m

(111)[01̄1] 56.21 0.08997 1.441 0.4026
(110)[11̄0] 57.79 0.1082 1.733 0.4476
(110)[001] 51.99 0.1082 1.733 0.4245

resulting critical value for the stress intensity factor
KG

I . The experimental elastic constants of Si [31] have
been used for the determination ofK2

I /G.
As discussed in the introduction, experiments and

theoretical calculations show a clear deviation from
the behaviour predicted by the simple Griffith picture.
Cracks can be stable for a range of different
strain/stress values around the critical Griffith value,
the so-called lattice trapping range. To determine this
range, the structure of cracks is studied for different
loads above and below the Griffith value,KG

I .
The initial crack configuration corresponds to the

atomic coordinates given by linear anisotropic elas-
ticity theory for a stress intensity factor of 1.0 or 1.2
KG

I for all the crack orientations considered. The
initial configurations are fully relaxed to mechanical
equilibrium to determine the crack structure for these
loads. All configurations are stable at both loads. The
resulting structure with the opened crack is taken as
the starting configuration for further loading or

unloading: the initial configuration (r
→

new) for the new
load (Knew

I ) is determined from the previous relaxed

configuration (r
→

old) by re-scaling the displacement of
the atoms with the ratio of the stress intensity factors,
according to:

r
→

new = r
→

ref +
Knew

I

Kold
I

( r
→

old2 r
→

ref) (3)

where r
→

ref are the atomic coordinates of the perfect
crystal. Note that such scaling is exact within linear
elasticity theory. Loads up to 1.5KG

I and down to
0.75 KG

I have been explored in steps of 0.05KG
I . We

have carefully checked that the loading history does
not change the stability of the crack.

2.3.2. Determination of bond distances and K+ ,2
I .

The structure of the crack for different loads provides
all the necessary information to determine the lattice
trapping range. In particular, the behaviour of bond
distances across the crack plane as a function of load
contains clear features which signal the advance or
the receding of the crack. For a given load, bond dis-
tances across the crack plane show a very character-
istic narrow region, associated with the crack tip,
where the bond distance changes abruptly from its
value for the bonds in the strained area ahead of the

crack tip to much larger values associated with
broken bonds. The displacement of the crack can thus
be monitored through the changes in bond distances
of the bonds close to the crack tip.

Fig. 5 shows bond distances for the large
(110)[11̄0] crack system for all the different loads
considered in our study. Bond no. 4, the bond closest
to the crack tip location in the elastic field, is intact
for the initial load of 1.20KG

I . It has a length of 2.9
Å and is therefore stretched by almost 25% compared
to the bulk value. Bond no. 3 has a bond length of
almost 5 Åand is clearly broken. Upon loading the
system, the bond distance for bond no. 4 increases
smoothly up to a load of 1.35KG

I where it increases
abruptly from about 3 A˚ to about 4 Å. This abrupt
change is signalling the breaking of this bond and the
advance of the crack by one lattice site. This load of
1.35 KG

I is therefore identified as the upper lattice
trapping limit, K +

I , for this crack orientation. Bond
no. 3 shows a similarly abrupt decrease of the bond
distance for a load of 0.90KG

I — the bond is still
marginally stable for 0.95KG

I . The abrupt change is
related to the re-formation of this bond and the reced-
ing of the crack by one lattice site. This load is thus
identified with K2

I . The lattice trapping rangeDK is
then defined asDK = (K +

I 2K2
I )/KG

I .

Fig. 5. Bond distances (in A˚ ) for the crack on the (110) plane
with a [11̄0] crack front (large system) at different applied
loads. The loading is indicated in the legend in units ofKG

I .
Bond labels correspond to Fig. 2.
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3. SURFACE AND BULK PROPERTIES

3.1. Bulk properties

Table 3 summarizes the relevant bulk properties
calculated with our Si pseudopotential and the corre-
sponding experimental data. We have used a cubic
cell with eight atoms and a Monkhorst–Pack [27]k-
sampling mesh of 4×4×4 to determine the bulk
properties. The elastic constants have been determ-
ined from fitting to the total energy or to the stress
[32] as a function of the strain for different distor-
tions. The values obtained from the two methods dif-
fer by less than 0.5%. The agreement between theory
and experiment is very good. The remaining differ-
ences are common for the DFT–LDA approach we
are using [32].

To obtain good quantitative agreement with experi-
ment, the bulk properties are usually calculated with
a rather large cutoff energy of 200 eV. Extensive tests
on bulk properties and surface reconstructions show
that the optimized pseudopotential still gives a good
description of Si with as low a cutoff as 96 eV [33].
As an example, we show in Table 3 that the lattice
constant and bulk modulus of Si calculated with the
96 eV cutoff compared well with the results for the
200 eV cutoff. For economical reasons, the rest of the
calculations in this work are performed with this cut-
off energy of 96 eV.

3.2. Surface energies and reconstructions for the
Si(111) and Si(110) surfaces

The standard method for calculating the surface
energyg is to evaluate the total energy of a supercell
containing a slab with a thickness of a few monolay-
ers and two equivalent surfaces. The surface energy
is often determined by subtracting the slab energy
from the reference bulk energy, which is obtained
from a separate calculation using the bulk unit cell.
This procedure does not give accurate results [34, 35],
because the comparison of total energies from differ-
ent unit cell calculations is only accurate if each of
the calculations is fully converged in terms of cutoff
and k-sampling. However, total energydifferences
between calculations on the same unit cell, where the
same cutoff andk-sampling are used, are known to
be much less sensitive to these factors. We have
therefore followed this second approach and defined
the surface energyg as the difference between the
total energy of two calculations in the same supercell:
Eslab corresponds to the slab, containingNslab atoms,
with two surfaces separated by a vacuum region.Ebulk

Table 3. Lattice constant (a), bulk modulus (B) and elastic constants of silicon. The results from our calculations with two different cutoffs are
compared to the experimental values taken from Ref. [31]

a (Å) B (Mbar) C11 (Mbar) C12 C44

Experiment 5.431 0.992 1.66 0.64 0.80
Calculation (200 eV) 5.461 0.913 1.56 0.59 0.76
Calculation (96 eV) 5.446 0.928 1.53 0.62

corresponds to a calculation in the same supercell,
with Nbulk atoms, where the vacuum has been filled
with Si atoms in order to form a perfectly periodic
bulk crystal. The weighted energy of the filled super-
cell (Ebulk/Nbulk) is then taken as the reference bulk
energy and the surface energy is defined as:

g =
1

2Ncell
SEslab2

Nslab

Nbulk

EbulkD (4)

whereNcell represents the number of atoms in the sur-
face unit cell, and the factor 2 accounts for the two
surfaces in the supercell.

3.2.1. Si(111)-2×1 surface. The stable surface
structure of the Si(111) surface forT#600 K is the
2×1 p-bonded chain Pandey reconstruction [36, 37].
This surface structure is formed during cleavage. The
energy released during the bond breaking process
allows the system to overcome the small barrier (0.03
eV/surface atom [38]) between the Pandey and the
Haneman reconstruction [39], a relaxed structure
which can be reached from the ideal (111) surface
without an energy barrier. The reconstructed surface
is modelled with a supercell containing a Si slab of
three {111} double layers of Si with two atoms per
layer to account for the 2×1 periodicity. This gives a
total of 12 atoms in the supercell. A vacuum region
equivalent to three double layer spacings (more than
10 Å) is introduced in the [111] direction. The total
energy is calculated using a Monkhorst–Pack (MP)
[27]

›

k-mesh of 1×4×2.
An atomic configuration close to the Pandeyp-

bonded reconstruction was taken as the starting point
for the energy minimization. The structural details,
including the buckling of the topmost atoms, agree
well with other calculations [40]. The difference in
height of the two topmost atoms in the reconstruction
is quite sensitive to the cutoff of the plane wave
expansion. Our optimized pseudopotential produces
the correct buckling with the 96 eV cutoff, while stan-
dard pseudopotentials require a cutoff larger than 164
eV to recover the correct value.

The relaxed surface energy per surface atom is
g111=1.155 eV/atom (1.44 J/m2). This result has been
obtained using a supercell with the lattice parameter
for our Si pseudopotential. Calculations with the
experimental lattice parameter change the surface
energy only by about 1%. Our surface energy lies
between the value estimated from the sublimation
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energy [3] (1.46 J/m2) and the values from other cal-
culations, like non-self-consistent Harris functional
calculations with a local orbital minimal basis [25]
(1.34 J/m2) or an empirical tight-binding Green’s
function approach [41] for an ideal unreconstructed
surface (1.36 J/m2).

3.2.2. Si(110) 1×1 surface. The supercell for the
calculation of the (110) surface contains a slab with
six (110) planes (two atoms per plane), and a vacuum
equivalent to six (110) layers. The reference bulk
supercell contains 24 atoms in 12 (110) planes. The
total energy is calculated using a MPk-mesh of
1×4×2.

While the ideal bulk termination has two surface
atoms at the same height (each with a half-occupied
dangling bond), the reconstructed surface shows a
characteristic buckling of these two topmost atoms.
This symmetry breaking is accompanied by a transfer
of charge between the atoms in the surface unit cell.
The upper atom has a dangling bond occupied by two
electrons, while the dangling bond of the lower atom
remains empty. This Jahn–Teller distortion opens a
gap — the ideal surface with the two equivalent half-
occupied dangling bonds is metallic — and further
stabilizes the surface structure.

The surface energy isg110=1.134 eV/atom (1.733
J/m2). This value is between the few measurements
quoted in the literature (1.51, 1.90 J/m2, see Ref.
[25]), and is close to the value of 1.69 J/m2 obtained
for an ideal unreconstructed surface with the empiri-
cal tight-binding Green’s function approach [41].

In agreement with experimental findings (see the
values quoted in Ref. [25]), the surface energy of the
(110) surface is larger than the surface energy of the
(111) surface.

4. RESULTS FOR FRACTURE SIMULATIONS

4.1. (110) Crack with [11̄0] front

The (110)[11̄0] crack is taken as the test case for
which the influence of system size and of the position
of the centre of the elastic field is determined. Follow-
ing the procedure described above we have determ-
ined the values ofK±

I for the medium size system and
three different positions of the crack tip (see Fig. 4).
The results are summarized in Fig. 6. When the origin
of the elastic field is moved across the crack tip bond
from A to C, the upper and lower critical loadsK±

I

are both shifted to lower values. However, the lattice
trapping rangeDK=0.5 remains almost constant. This
indicates that the absolute values ofK±

I depend on the
location of the centre of the elastic field but the lattice
trapping range does not. Since our main emphasis will
be put on the latter, the choice of the centre of the
elastic field is more or less arbitrary. For the rest of
this study it is always located at position B.

The dependence ofK±
I on system size is shown in

Fig. 7. The values ofK±
I are the same for all the sizes,

except for a small change of 0.05KG
I between the

Fig. 6. Lattice trapping range (K±
I in units of KG

I ) as a function
of the crack tip position of the elastic field with respect to the
atomic positions for the (110)[110̄] crack simulated with the

medium size unit cell (see text and Fig. 4 for details).

Fig. 7. Lattice trapping range (K±
I in units of KG

I ) as a function
of the size of the unit cell used to simulate the crack propa-
gation for the (110)[110̄] crack. S, M and L correspond to the
small, medium and large systems for that crack orientation (see
Table 1 and Fig. 2). The singularity of the crack elastic field
is located at position B with respect to the atomic positions

(see Fig. 4).

small and the medium size system. This change is of
the order of the accuracy of the calculations which,
in this respect, is determined by the interval (0.05
KG

I ) by which the loads are changed.
The bond breaking and healing processes in the

(110)[11̄0] crack system are characterized by a pro-
nounced change of the length of the crack tip bond
as described in Section 2. The bond breaking process
upon loading is analysed in more detail by comparing
the bond distances across the crack plane for the
medium and large systems in Fig. 8. Both systems
show the same general behaviour at the same value
of the stress intensity (1.30–1.35KG

I ). However, the
bond length of bond no. 4 before breaking is larger
in the smaller system (3.3 A˚ ) as compared to the
larger system (3.0 A˚ ). Similarly, the abrupt increase
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Fig. 8. Comparison of the bond distances (in A˚ ) as a function
of stress intensity factor for the medium (dashed lines, open
symbols) and large (continuous lines, filled symbols) systems

with the (110)[11̄0] orientation.

in bond length of bond no. 4 at a load of 1.35KG
I is

more pronounced in the larger system. This reflects
the less flexible boundary conditions on the crack tip
atoms in the smaller systems. Irrespective of these
details, the entire bond breaking process is clearly dis-
continuous at all system sizes.

The atomic configurations immediately before and
after the breaking or healing of the crack tip bond are
shown in Fig. 9. Note that the breaking of the bonds
is accompanied by significant relaxations of the sur-
rounding atoms. Both crack surfaces show the buck-
ling, characteristic of the reconstructed (110) surface.
The differences between the medium and large sys-
tems for bonds no. 1 and no. 2 are related to this
reconstruction of the crack surfaces. The atoms in the
lower surface correspond to different buckling orien-
tations in the medium and large system as shown in
Fig. 2. It is quite remarkable that the different buck-
ling does not significantly influence crack stability.
This is further confirmed by a calculation where one
of these atoms is kept fixed at the position given by
anisotropic elasticity and its dangling bond saturated
with a hydrogen atom. Even such changes do not alter
the general behaviour or the critical loads. This insen-
sitivity also explains the very similar results which
are obtained for the small system where all these
atoms are kept fixed during the relaxation.

4.2. (110) Crack with [001] front

The behaviour of the (110)[001] crack differs sig-
nificantly from one with the perpendicular propa-
gation direction considered above. Here, the bond
breaking process is best described by a “continuous”
variation of bond distance with the increase in stress
intensity (see Fig. 10). The bond distance of bond no.
4 continuously increases from 3.13 to 4.13 A˚ with
increasing stress intensity. This same general behav-
iour is observed for both the medium and large sys-
tem. This continuous behaviour makes the determi-

nation of K±
I more complicated andK±

I not unique.
One has to find a critical distance at which the bond
is considered broken. The bond distances in this crack
system appear to change most significantly after a
bond length of 3.5 A˚ has been overcome. With this
criterion, the value ofK +

I changes from 1.35 to 1.30
KG

I as the system size is increased from the medium
to the large system. However,K2

I , associated with the
healing of bond no. 3, is then equal to 1.00KG

I for
both sizes. If instead the critical bond distance of the
medium size (110)[11̄0] crack system is used, all
values drop by 0.05KG

I . Consequently the lattice trap-
ping range is not affected by the definition of the criti-
cal bond distance and drops fromDK=0.35 to 0.3
upon increasing the system size from the medium to
the large system.

The influence of system size on this crack is also
shown dramatically in the behaviour of the system for
loads above 1.35KG

I : in the large system, the crack
propagates further and breaks the next bond (bond no.
5), while the crack in the medium size system does
not break bond no. 5 even at 1.5KG

I . The atomic con-
figurations for the large system, shown in Fig. 11 for
stress intensity factors of 0.95, 1.20, 1.35 and 1.40
KG

I , illustrate these findings.

4.3. (111) Crack with[01̄1] front

The (111)[01̄1] crack system was studied only in
the medium system size. The cracks in this system
behave qualitatively like the (110)[001] cracks. The
bond distances across the crack plane, displayed in
Fig. 12, also increase continuously with increasing
stress intensity. Depending on the critical bond dis-
tance for breaking, the upper and lower lattice trap-
ping limits are 1.25 (or 1.2)KG

I and 0.90 (or 0.85)
KG

I . The lattice trapping range is againDK=0.35.
The atomic configurations at different stress inten-

sity factors (1.20 and 1.25, 1.30KG
I ) are shown in

Fig. 13. For bond distances larger than 5 A˚ , the frac-
ture surface already develops the Haneman “buckled
row” reconstruction. This result agrees with a pre-
vious analysis of this reconstruction as a function of
the gap distance between the two (111) surfaces [25],
which showed that surfaces do not reconstruct for gap
distances smaller than 4.6 A˚ . For distances larger than
4.6 Å the Haneman reconstruction was observed, and
it is only for significantly larger distances that the
Pandey reconstruction becomes the total energy mini-
mum.

5. DISCUSSION

Fracture processes and the stability of cracks in
crystal lattices have so far mainly been studied by
empirical atomistic simulation schemes. For silicon
this has been done with very simplistic model poten-
tials [4] and more recently also with supposedly more
advanced Stillinger–Weber potentials [21]. To the
best of our knowledge, there has previously only been
one single study of a crack in silicon by more
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Fig. 9. Atomic configurations (the crack front direction is normal to the plane shown) for the crack on the
(110) plane with a [110̄] front with different values of the stress-intensity factor: 0.90, 0.95, 1.30 and 1.35
KG

I . These values correspond to the configurations inmediately before and after the breaking of one of the
bonds and the advance of the crack. The broken bonds are marked with dashed lines

Fig. 10. Same as Fig. 5 but for the crack on the (110) plane
with a [001] front. Bond labels correspond to Fig. 3.

advanced quantum mechanical descriptions. This
study by Spenceet al. [25] focused on the
(111)[01̄1] crack system only. Our results for the
(111)[01̄1] crack system are compared with these pre-
vious studies below.

Sinclair, in his pioneering work [4], explored the
influence of the interatomic interaction, described
with several simple empirical potentials, on the lattice
trapping. He used flexible boundary conditions, where
the elastic strain parameters were taken as variables
in the minimization process, together with the atomic
coordinates in the atomistic region. Sinclair found a
lattice trapping rangeDK<0.3–6.0, depending on the
model potential used. The larger values were obtained
with force laws of shorter range. In comparison with
our value ofDK<0.35 for the (111)[01̄1] crack sys-
tem it is obvious that a rigid short range interaction
model can not quantitatively account for the crack tip
stability in any sense.

The calculations of Spenceet al. [25] differ from
the ones presented here mainly in the quantum mech-
anical method used for the calculation of the atomic
forces. They used a non-self-consistentab initio tight-
binding method, based on the Harris functional, with
a minimal local orbital basis. Our calculations use a
plane wave basis and are fully self-consistent, which
provides complete freedom in the determination of
the extension and symmetry of the wavefunctions.
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Fig. 11. Atomic configurations (the crack front direction is normal to the plane shown) for the crack on the
(110) plane with a [001] front with different values of the stress-intensity factor: 0.95, 1.20, 1.35 and 1.40
KG

I . The bonds which are broken during the loading process are labelled 3–5 (see Fig. 10). Broken bonds are
marked by dashed lines. The origin of the elastic crack field is in the middle of bond no. 4.

Fig. 12. Same as Fig. 5 but for the crack on the (111) plane
with a [01̄1] front. Bond labels correspond to Fig. 13.

Some further differences are the use of isotropic vs
anisotropic elastic displacement fields as boundary
conditions and somewhat different methods to deter-
mine the lattice trapping range. Unfortunately, the dif-
ferent methods to determine the stability range of the
crack can hardly be compared. While we determine

the bond breaking and healing loads directly by
relaxing the entire structures, they computed the
energy barrier to crack advance for different values
of the stress intensity factor and extrapolate linearly
to zero barrier height to determineK±

I . The energy
barriers were determined by computing the total
energy for structures which interpolate linearly
between two fully relaxed atomic configurations, cor-
responding to two different positions of the crack tip
separated by one atomic increment (one more broken
bond). Methodologically their procedure may lead to
reasonable estimates for the barrier heights but our
method should give more accurate values for the stab-
ility limits. At similar system sizes, the magnitude of
the lattice trapping range of their calculation
(DK<0.36) agrees extremely well with our value of
DK<0.35 for the (111)[01̄1] crack system. There are,
however, some differences between their neutral load
Kneutral

I = 0.45 MPa√m, which is defined as the centre
of gravity of the stability regime, and the Griffith load
to which we have normalized our data
(KG

I = 0.40 MPa√m). As a consequence, the absolute
values of the loads are slightly different. However,
these differences are well within the range in which
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the boundary conditions may affect the absolute valu-
es.

A second interesting detail in the comparison of
the calculations of Spenceet al. [25] with the study
presented here is the dependence of the stability range
of the crack on system size. For the (110)[001] crack,
which shows the same “continuous” bond breaking
process as the (111)[011̄] crack system studied by
Spenceet al., we have found a decrease in the lattice
trapping range with increasing system size. They also
find a similar decrease with system size. However,
they have addressed the effect of system size with a
flexible boundary condition scheme and used a unit
cell with 324 atoms divided into two regions: the
inner region corresponds to the 120 atoms, which
have been used in the fixed boundary calculations and
is treated using theab initio tight binding method.
The outer region is described by the empirical Tersoff
potential. The outer boundary of this region is kept
fixed at the elastic solution, while the boundary
between the two atomistic regions is flexible, and is
determined through a series of minimization steps.
These “flexible boundary” calculations gave a slightly
different value for Kneutral

I = 0.47 MPa√m but most
interestingly also gave a decrease in the lattice trap-
ping range to onlyDK<0.27.

One of the most striking observations in our calcu-
lations are the two distinct types of bond breaking
processes: a continuous process without pronounced
structural relaxations and a clearly discontinuous
abrupt bond breaking event. The continuous process,
which is observed for both the (111)[011̄] and the
(110)[001] crack systems, mimics what one would
expect from continuum theory and therefore results
only in a relatively narrow lattice trapping range. The
magnitude of the trapping range decreases upon
increasing the system size, as detailed above and as
also found by Spenceet al. [25]. Consequently, the
trapping in the continuous process may partly be
regarded as an effect of the limited system size. One
may then conjecture that the trapping range could
decrease further upon increasing the system size to
macroscopic dimensions. In either case, the low lat-
tice trapping leads to relatively easy propagation of
cracks in directions in which this continuous bond
breaking occurs. In contrast, the discontinuous pro-
cess is clearly connected to structural rearrangements
in the immediate neighbourhood of the crack tip.
Comparing the different system sizes, it is apparent
that the lattice trapping is mainly a result of the relax-
ations of the six to eight atoms immediately surround-
ing the crack tip. The magnitude of the trapping range
therefore does not change with system size even for
very small systems. The magnitude of the lattice trap-
ping range connected with this discontinuous bond
breaking event (DK=0.5) is significantly larger than
the trapping range from the continuous process.

The lack of dependence of the trapping range on
system size in the (110)[110̄] crack system is truly
remarkable. Even the small system, which only con-

tains 48 Si atoms, of which only 14 are allowed to
relax, provides a reasonable estimate of the lattice
trapping range. The changes in charge density with
stress intensity factor provide an explanation for this
behaviour. Fig. 14 shows the charge density in a plane
perpendicular to the crack front direction through the
crack tip bond for different stages of the loading pro-
cess for the medium size (110)[110̄] crack. Marked
changes in the electronic distribution are confined to
two of the bonds. The one which is breaking and the
one immediately above. At a load of 1.25KG

I , clearly
below the critical load, both bonds are significantly
weakened to a similar extent. Both do not have a
maximum in the charge density in the centre of the
bond. As the critical load is approached, the upper
bond is recovering charge density at the expense of
the crack tip bond and is fully intact again at 1.35
KG

I . Consequently, it appears that a significant part of
the lattice trapping in the (110)[11̄0] crack system is
caused by the load sharing between the crack tip bond
and the one above.

Experimentally, the discontinuous process which is
connected to large lattice trapping should result in a
relatively high fracture toughness. In contrast, the
continuous bond breaking and a small lattice trapping
range should lead to low fracture toughness and easy
propagation of the cracks. Consequently, the calcu-
lations predict a pronounced anisotropy with respect
to crack propagation in different directions on the sili-
con (110) plane. This is in contrast to the thermodyn-
amic Griffith picture where a difference with respect
to the propagation direction should only come from
elastic anisotropy.

Comparing the calculated propagation anisotropy
for {110} cleavage to fracture experiments [16, 42]
it seems as if the agreement is only qualitative. Propa-
gation in the “difficult” k001l direction is not seen in
experiments, which instead show a deviation of the
crack from the original plane onto inclined planes,
while crack propagation continues on the {110} plane
in the simulations. However, this may well be con-
nected to the boundary conditions imposed on the
small atomistic simulation cell which do not favour
such deviation of the crack from the original crack
plane.

To assess the possibility for the crack to deviate
from the original (110) plane, one can compare the
opening stress intensity on the (111) plane inclined
by Q=35.3° with respect to the (110)[11̄0] crack with
the fracture toughness of the (111)[11̄0] crack system.
The inclination of course decreases the opening stress
intensity compared to the opening stress intensity on
the original (110) plane, however, the large lattice
trapping in the “difficult” (110)[1̄10] crack system
just compensates this decrease. At the upper lattice
trapping limit of the (110)[1̄10] crack system the
opening stress intensity on the inclined (111) plane
is KQQ(35.3°) = 1.03K +

(111)[1̄10]. The finding that the
crack did not deviate, although in principle it could,
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Fig. 14. Charge density plots in a plane perpendicular to the crack front for the medium size (110)[110̄] crack
for three different values of the stress intensity factor (1.25, 1.30 and 1.35KG

I ). Contours are in units of 1022

electrons/A˚ 3.

most certainly has to be attributed to the small size
of the system.

The inclined crack of course also experiences a
mixed mode (opening and shear) loading, which actu-
ally exerts a higher driving force on the crack than
just the opening component. However, the influence
of the mode mixity on the lattice trapping is com-
pletely unknown until today and must be deferred to
future investigations, which probably require larger
system sizes as well. Another aspect which must also
be deferred to future investigations is the way in
which the lattice trapping barrier can be overcome.
The lattice trapping barrier of a crack can be viewed
like the Peierls barrier of a dislocation. In analogy to
dislocation motion it should therefore be possible to
overcome this barrier by the thermally activated gen-
eration and motion of kink pairs in the crack front at
elevated temperatures. The energetics of this kink pair
nucleation process is as yet largely unknown and the
study of kink pair formation in a crack front is an
important topic for future investigations.

In the comparison to experiment there are two
further aspects to be discussed: the first is the magni-
tude of the critical stress intensity at fracture. Experi-
mental values from static experiments [14] are almost
a factor of two higher than the critical stress inten-

sities calculated here. This should probably rather be
attributed to the imperfect crack tip geometry and to
imperfections in the measured fracture toughness than
to possible deficiencies of the calculation, because
dynamic fracture experiments indicate that the con-
sumed energy may be as low as 2.5 J/m2 for the (111)
cracks [43] and 3 J/m2 for the (110) cracks [42],
which is in excellent agreement with our calculations.
The second aspect raised by the static experiments
[14] is which of the cleavage planes of silicon is actu-
ally the preferred cleavage plane. Our calculations
show a slight preference of the (111) cleavage plane
mainly due to its lower surface energy but similar
ease of bond breaking for the (110)[001] and the
(111)[01̄1] crack systems. However, since the differ-
ences in the surface energies are not very pronounced
this result has to be regarded with some caution.
Specifically, since the absolute values of the lattice
trapping for the “easy” directions still seem to depend
on system size and therefore remain somewhat
unclear.

One of the important side aspects of the present
calculations is that theab initio calculations presented
here can also provide the basis for the development of
future improved empirical potentials for silicon. The
results of the crack tip calculations probe the atomic
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bonding during the breaking process in a range of
distances which is hardly accessible to other calcu-
lations and which clearly is of importance for the
study of mechanical processes. The calculations
therefore can be used as benchmark data which have
to be reproduced by a simpler interaction model if
an improved potential is to be used in mechanically
distorted environments.

6. CONCLUSIONS

Our total-energy pseudopotential calculations show
that the bond breaking processes at a crack tip can
have very different character. The bond breaking can
be continuous — almost as expected from continuum
mechanical considerations — or discontinuous. The
discontinuous process is clearly connected to atom-
istic relaxations and rearrangements of only a few
atoms around the crack tip. This can partly be under-
stood as a result of some load sharing between the
crack tip bond and the neighbouring bond. The dis-
continuous process results in a rather large lattice
trapping as compared to the continuous bond break-
ing event.

One important consequence of the difference in the
bond breaking behaviour is that it introduces an ani-
sotropy with respect to the propagation direction of a
crack on one and the same cleavage plane. While
bonds break continuously and cracks propagate easily
on the {111} plane and the {110} plane if crack
propagation proceeds in thek1̄10l direction, a large
lattice trapping prohibits crack propagation in ak001l
direction on the {110} plane. These differences can
explain the experimentally observed anisotropy with
respect to propagation direction in silicon single crys-
tals.
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