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This paper presents a general method to describe and analyze electron correlation effects in local-orbital
electronic structure calculations using a generalized Hubbard Hamiltonian. In our approach, we first introduce
a local density formalism where the total energy of the system is obtained as a function of the orbital
occupancie$n;} associated with each local orbital; in particular, exchange and correlation local potentials are
presented for a multilevel case. In parallel, using the dynamical mean field approximation, a many-body
solution is obtained by means of a local self-energy that appropriately interpolates between the low and high
correlation limits. We also show that the local density and the many-body solutions are linked through charge
consistency conditions. These two solutions are applied to a multilevel Anderson impurity and to a multiband
Hubbard lattice, our results showing the high accuracy of the approach presented in this paper. Further on, we
discuss how to apply our previous analysis to the case of crystals and molecules and analyze several examples:
bulk Si, and HF and KO molecules. The good results obtained for these cases show that our approach for the
description of correlation effects offers an interesting alternative to the well-established density functional
methods based on the calculation of the electron dem'ﬁy

I. INTRODUCTION mation as far as band gaps are concerned.
All these methods have been traditionally implemented

The prediction of the electronic and geometric structure ofusing a plane wave basis for the expansion of the electronic
a solid requires the calculation of the quantum-mechanicalvave functions? Recently, different methods based on local
properties of a system of interacting electrons in the presencerbital basis have been develop@d?? Local orbital basis
of a given configuration of nuclei. Different approaches havesets may be used to improve significantly the computational
been developed over the years to handle this complicateperformance of electronic structure calculations. For ex-
many-body problem. Density functional thediFT) (Refs.  ample, efficient first-principles tight-binding molecular dy-
1-3) provides an exact mapping of the problem of a stronglynamics methods can be devised using appropriate atomiclike
interacting electron systerin the presence of the nuclei basis sets, and ordé&t-algorithms can be easily implemented
onto that of a single particle moving in an effective potentialin a local orbital framework®
due to all the other electrons. With this approach, properties On the other hand, local orbital schemes are the natural
such as the total energy of the system could be calculateplayground for the models, such as the Anderson or Hubbard
exactly. However, the effective potential—in particular, the Hamiltonians, which have been used to describe systems
so called exchange-correlation potential—is not known exwhere correlation effects are so important that the band pic-
actly and further approximations are needed. The local derture, implicit in all the approaches described above, breaks
sity approximatioh (LDA) assumes that the exchange-down. The established methods in this field are based on
correlation functional is purely local and can be calculated assreen’s functions and self-energies which are naturally writ-
a function of the local charge density. This approach proten in terms of local orbitals. This reflects the fact that the
vides accurate total energy differences between related strumore important contributions to the correlation energy come
tures but total cohesive energies can be in error by more thainom the local intrasite terms. The idea of locality even per-
20%> The generalized gradient approximafiofGGA), vades the formulation of new approaches. The dynamic
where both the charge density and its gradient are used tmean field method (DMF) is a new approach which has
calculate the exchange-correlation functional, improves théeen developed over recent years and has led to some
LDA results but does not fix completely the problem with progress in our understanding of these correlated systems.
the cohesive energies. Although total energy calculations cafhe essential idea is to replace a lattice model by a single site
be performed quite accurately with these approximationsimpurity problem embedded in an effective medium deter-
neither of them provides the correct quasiparticle spectrunmined self-consistently. In this way, only local quantum
of the systen®. A new approach based on an energy-fluctuations are included in the calculation.
dependent nonlocal functional is necessary for this purpose, Traditionally these two fields, electronic structure calcu-
and further approximations are needed to make the problemations based on LDA or GGA and PW basis for realistic
tractable. The GW approximati6ri® has been applied to materials, and sophisticated many body techniques applied to
metals and semiconductors and provides an energy spectrumodel Hamiltonians appear as two completely different,
in good agreement with the experiment. We also mention theven opposite, approaches to the electronic properties of the
LDA + U method! which offers a very simple way of cor- system. However, once the electronic structure calculations
recting for the main deficiency of the local density approxi-are formulated in terms of local orbitals several connections
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between the two approaches emerge naturally. techniques(Green functions, self-energiesin two limits

The purpose of this paper is to presemgemeral approach  {j/t—0 and U/t—c. From this analysis, general expres-
to describe and analyze electron correlation effects in localsjons for the intra-atomic correlation energy and the self-
orbital electronic structure calculations. This new approaciénergy are proposed, using an interpolation between the
also provides a connection between simple mo@elg., the  apove two limits. As discussed in Sec. lII, these results can
Hubbard mode| more sophisticated modefs.qg., the gener-  pe ysed to analyze the generalized Hubbard Hamiltonian fol-
alized Hubbard modgland fully first-principles total energy lowing two alternative procedure$a) many-body andb)
methods. Therefore, the discussion presented below is al§® solutions. These cases are shown to be linked through the
useful for deriving the parameters appearing in the simpleharge self-consistent conditions. The expression obtained in
models from first-principles calculatioRs. this section for the intra-atomic correlation energy will be

The main two points discussed in this paper are as folysed in Sec. V as one of the main contributions to the
lows. exchange-correlation energy in our first-principles LD total-

(l) How the contributions due to the correlation energyenergy method for Crysta]s and molecules.
can be included in a local densityD) first-principles total The ideas introduced in Sec. Il are applied to a multilevel
energy method. In this approach, the correlation energy id\nderson model and to a Hubbard lattice in Sec. IV. The
obtained as an explicit function of the orbital occupanciesesults discussed in this section for highly correlated systems
{ni} in contrast with standard density functional approacheshow the accuracy and quality of the approximations intro-

such as the LDA or GGA. duced in this paper.

(i) How to obtain the quasiparticle spectrum going be- |n Sec. V, we discuss how to apply our previous analysis
yond the LD solution. to the case of crystals or molecules. The case of crystals
The generalized Hubbard Hamiltonian allows us to make contact with conventional DFT calcula-
NN . tions, while the case of small molecules shows how to go
H=HOE+HM, (1 beyond the DMF approximation. In this section we show

how the results obtained in Secs. Il and Il for the exchange-
correlation energy corresponding to the generalized Hubbard
Hamiltonian can be extended and applied to LD first-

HOE= 2 ElNigot+ >t ChoCispe (2  principles total energy calculations. In particular, the results

la

whereHCE defines the one-electron contribution

fa,o la#jp.o obtained by using this method show that the approach pre-
~ MB sented in this paper for the description of correlation effects
andH™ the many-body term offers an interesting alternative to the well-established den-
A 1 o sity functional methods based on the electron der)s(@)
AME=> > UiNiyoNig.er (LDA,GGA).
i,a0c# B’ Finally, we mention that, regarding the LD-LCAO ap-
a0 Bo’ proach, this paper is a continuation of Ref. 26, where the

" 1 S 3 i i 3) basic ideas were first introduced. In this work, we consider
2 & Tlelpliectipets the possibility of having degenerate atomic orbitals and
] ) ] present, for this more general case, the many-body orbital
plays a central role in the discussion presented below. IBotentials necessary for performing a fully consistent local
Egs.(2) and(3), c', c, andn are the usual creation, annihi- density-LCAO calculation. For the sake of completeness we
lation, and number operators, respectively. In this paper weliscuss briefly, however, in Sec. Il the main ideas already
will discuss in detail how the correlation energy and quasipresented in Ref. 26.
particle spectrum for this Hamiltonian can be obtained. We
stress here that Hamiltonigf) includes most of the many- Il. LOCAL DENSITY FORMALISM FOR GENERALIZED
body effects appearing in linear combination of atomic or- HUBBARD HAMILTONIANS
bital (LCAO) Hamiltonians. In Sec. I, we discuss our gen-
eral local density formalism for generalized Hubbard In this paper, we take as our starting point Hamiltonian
Hamiltonians and analyze the Hartree, exchange, and extrél). Notice that in Eq(3), U, represents the intratomic inter-
atomic correlation potentials for each localized orbital. Inaction between orbitalsao andiBc’ located in the same
Sec. Il it is also shown how, by using a dynamical mean fieldsitei andJ; , j ; defines the interatomic Coulomb interaction
(DMF) approximation, the generalized Hubbard Hamiltonianbetween orbitalsx and 8 in different sitesi andj. In this
can be mapped onto a “reduced” Hubbard Hamiltonian  paper we assume the intratomic Coulomb interactigrio
be the same for all thé orbitals; this implies neglecting
A =g A o ot 2 effects associated with Hund’s rules as is commonly done in
H= % Eia”i“”iagg,g tia,jgCiacCise the generalized Hubbard Hamiltoniaa more general analy-
sis including Hund'’s rules and following the discussion pre-
sented in this paper will be published elsewhehe Eq. (2),
E andt describe the different atomic levels and their hopping
_ _ interactions. We also assume that any intratomic hopping
where E{, is a renormalized o level andU; an effective interaction is zero; this restriction will be removed in Sec. V.
intrasite Coulomb interaction. This reduced Hubbard Hamil- Hamiltonian (1) has been used as the basic approach to
tonian is then analyze@Sec. Ill) by means of many-body analyze many different correlation problems. The restricted

1 ~ ~ A
+§ 2 Uinicw'niﬂo”!

i,a0# Ba’
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Hubbard Hamiltonian is obtained by takingj, jz;=0 in Ny 1
Hamiltonian (3): we shall discuss below how, upon given E'lNiat]=5 > UiNigeNiger
conditions, this restricted Hamiltonian with renormalized pa- hao#po’
rameters plays an important role for defining intratomic cor- 1 @087’
relation effects. + > 2‘1 Jiai Mo g (8)
A. Local density equations while the exchange energy is
Following the LD approach introduced in Ref. 26, the o
total energy of the system described by Hamiltoniincan EX[{ni}]=— = ORI S 9)
be shown to be #&unctionof the orbital occupation numbers tao 2 & Ttelflecipopoiac

Niwo={(Ni.,) Where() indicate the expectation value in the

. IS
ground state: With N 46:j 50={CiasCjgr)- NOW, we follow the argument

given in Ref. 26, and make use of the sum rule
E=E[Ny;.,n1;.N21.N2) Nige - 1=E[{Niget]. ()

2 nia(r;jﬁ(rnjﬁ’(r;ia(r:nia(r(l_nia(r) (10)
In similarity with standard DF theory, the ground-state 1B#ia
orbital occupation numbers are the $gf,, that minimizes {5 \yrite
E[{n;.o}]; this minimization process is equivalent to the
self-consistent solution of an effective one-electron Hamil- « 1
tonian H®", which depends itself on these occupation num- E{Niaot]=— 5 ;{r JiaoNiao(1 = Niag) 11

bers. In what follows, we show how®" can be defined in
terms of the parameters of Hamiltonigh) and the orbital
occupation numbers.

It is useful to split the total energy in E@4) into the
one-electrorT and many-bodyeM® contributions

which yields the exchange energy as the interacligp [see
Eqg. (15 below], between the chargs;,, and its hole (1
—Nj..). The extran;,, hole needed for a total exchange
hole of 1 is associated with the self-interaction correction
that is automatically included in our formalism.

. _ . MB[ f 1. At this point it is convenient to comment that the ex-
BN ot = TH Mo+ B Niao} ), 2 change pair correlation functiog,(i«,jB) is defined® by

whereT is the mean value df OF for the ground state gieff  the equation

[Eqg. (6) below]; then, following Kohn and Sham, we can

introduce the following effective Hamiltonian: Niag:jpoNposiac= MNiaoGolia,j B) (12
and
Heﬁ: E (Ei(Ta+Vi’\QyBa)ﬁia o
| 2 gyliajB)=1-ni,,. (13
JBFia
+ >t (e, CipetClsuCing),  (6) In our discussion, we assume to have in the initial Hamil-
s (ieif) tonian(1), tj,iz=0, and a symmetry around each lattice site
where such that
niao;i,B(T:O' (14)

(QEMB[{niaU}]
ME,SUZT- (7 This basically means that the exchange hole around the or-

bital i « is extended beyond the local siteThis allows us to
Solving Egs.(6), (7) self-consistently we can calculate the write the effective interactiod; ., [see Eq(11)] as follows:
set{n;,,} for the ground state, and using E&) we obtain NN
the total energy of the system. Jiae=X(Niae)dig » (15

whereJ\\N is the mean Coulomb interaction between an elec-
B. Hartree and exchange energies tron in theiao orbital and another electron in the nearest-
Obviously, the main problem in this approach is to deter-N€ighbor sites, an&(nj,,) a parameter, smaller than 1,
mine EMB in Eq. (5), as a function of the occupation num- Measuring how the exchange hole associated with e
bers. Again, it is convenient to split this term into the so-Orbital extends around thesite. In Ref. 26 we have shown
called Hartree, exchange, and correlation contributionsthat, for a three-dimensional crysta(n;,,) is practically
While it is straightforward to write down the functional de- constant in the occupancy range 0<Irg ,,< 0.85, with val-
pendence of the Hartree term, exchange and correlation coleS between 0.7 and 0.8 for metals; in semiconductors, we
tributions are more involved. The following discussion de-have found, however, that(n;,,) is around 0.90-0.95 for
scribes the procedure to calculat€*[{n;,,}] and the same range of occupancies. In both ca¥és;,,,) tends
EC[{n; o }]. to zero a3 (1—n;,,)*®for n;,,,—0 or 1, as corresponds
From Eq.(1), we see that the Hartree contribution is givento the conventional exchange energy in this linff;,
by ——Kn® in the three-dimensional case for,,— 0.

lao?



4312 P. POUet al. PRB 62

It is also worth commenting that for a crystal with infinite hole that has already approached ihe orbital to its near-
coordination corresponding to the DMF liniftthe exchange est neighbor’s distance. We should also comment that the
hole becomes localized in the nearest-neighbor sitesnany-body potential/*C _, associated witlE* is given by
X(ni..)=1. In general, when the lattice coordination is in- ’
creased over a given coordination number we can expect _ IEXC{N; 4o} ] 1
X(n;,,) to increase towards 1. Vi)(fU:T =— yin(niw)Ji’\'aN<§ “Nigo|s

Summarizing this discussion, the exchange energy can be i 21)
written in the following way:

whereX(n;,,) has been assumed to be practically constant.

1 Let us now consider the intra-atomic correlation energy.

E*{Miaot] =~ 2 % X(Mia)da Miao(1=Nigy), (16 As discussed in Ref. 26, intra-atomic correlation effects ap-
pear when part of the total exchange-correlation hole (1

where for most practical caseX(n;,,) can be taken con- —n, 3 in Eq.(20), is transferred to the same atdrof the
stant. Then, we can introduce the following exchange poteno o orbital. Assume that a fractiofy,,(1—n;,,) with 0
tial V%, : <fi.e<1, is transferred to the atom Then, the intratomic

X correlation energy associated with tiveo orbital should be
X _0E [{nimr}] _

1 .
VIaO'_ émiao’ - _X(niaa)Ji’\laN(E_niao) . (17) given by
f'aa’
One should keep in mind that fam,, close to O or 1, Eﬁiw=—'7uiniw(1—niw). (22
X(nj,,) cannot be assumed to be constant and &Q)
should be modified accordingly including the contribution of

- . At the same time, the extra-atomic exchange-correlation
the derivative ofX(n,,,) with respect ton; ., .

energy should be reduced by a factor(t;,,,), due to the
_ smaller hole located outside the atom. Then, the total
C. Correlation energy exchange-correlation energy should be given, in the DMF

In a first step, we discuss extra-atomic contributions to thdimit, by
correlation energy. These contributions arise due to the
extra-atomic screening of the exchange interaction and the gxc 1 NN

3 . " E [{niaa}]z_iz (l_ficw')"]ia niao’(l_niao')
Coulomb-hole energy® As discussed in Ref. 26, we can iao
embody all these effects in a facten;,,) such that the
sum of the exchange and extra-atomic correlation energies

1
- . . _Ez fia(rUinia(r(l_nia(r)- (23)
EXC, is given by

lao

~ 1 This equation shows that intra-atomic correlation effects
EXC[{Ni gt ]=— > 2 y(niw)X(niM)Ji'\‘aNniM(1—niw). can be added to the extra-atomic exchange-correlation en-
teo 18 &% by considering an effective interactiob;~JN") in-

side the local sité. This result suggests introducing the fol-
We have also found in Ref. 26 that for 0<5, lowing “reduced” Hubbard Hamiltonian:

lao
<0.85, the producty(n;,,)X(ni,,) is very well approxi-
mated by 1. This suggests replaciggn;,,) by a constant ﬂr:E =4 +i’/iHa (r+'\'/ixac(r]ﬁia ot z tiajﬁéiTa (r&jﬁ "

a

Yiao defined by the conditiow; ,,X(N;,,) =1 for the occu- lao ia#jp.o
pancy range 0.15n;,,<0.85 and write for the whole inter- 1
val O<nia(r<1 +§ 2 Uiniao'niﬁa" ’ (24)
1 i,aoc# Bo’
EX[{Niact]=— > > YiaoX(Mige) I Miao(1-Nigy). already mentioned in the Introduction, wherg!!
iao , . '
(19) :EBO./¢QU.JiNNniBG./+Z]‘¢iBU Jia‘jlgnjﬁyg/ ;1IN Eq (24) the

exchange and extraatomic correlation effects are included in
This equation defines, in our formalism, the exchange anghe local potentialV:*®_, while U; is the effective intra-

fa,0

extra-atomic correlation energy. Notice that in the DMF ap-ztomic Coulomb interactiont; — JNV), assumingI™N to be
proximation X(nj,,) =1 and alsoy,,=1. Then,E* is 4 independent. Notice that the total Hartree potenti3
well approximated in this limit by associated with Eq8) is given byV!!, +3 4./ ,,Uini 500

la,o
1 as it should be. For a Hubbard Hamiltonian such tbat
EXC[{niaa}]:—EE I (1-Nie); (200 =3, Eq. (24) already represents the effective LD-

i Hamiltonian Eq.(6). Our first important result is to approxi-

this simply reflects that no extra-atomic correlation term con.Mate Hamiltoniar(1) by Eq. (24), where the LD potentials,
tributes to the many-body energy in the DMF limit. This can Vi, , andV}«,,, should be treated, regarding total energies,
be easily understood as the result of having, in the DMFsuch as the many-body tem‘fﬁ, in Eq. (6).

approximation, all the exchange hole localized in the nearest- In the following section we concentrate our analysis on

neighbor sites: extra-atomic screening can not reallocate thidiscussing the many-body properties of the restricted Hub-
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bard Hamiltonian given by Eq24). We shall present solu- Total energies and other quantities can be calculated using
tions to this Hamiltonian using a LD approximation and aconventional Green-function methods. In particular, the total
many-body approach. In the LD approximation energy associated with Hamiltoni&®5) is given by

321 aos porUiNiaeNi g, is replaced by a Hartree energy and

a correlation energ#'[{n;.,},U; t;i], a function of the oc- 1 Er ~ -
OF [{Nias} Ui i) E=—2 > |mf7 (08i0jp+EfuBiaipTtlnip)

cupation numbers séh; .}, and the parametets; andt;; . 2 ijaBo

In the second approach, we introducdoaal self-energy

2ii(w) and calculate correlation energies and density of XG (w)d_“’ (29)
states using conventional Green’s function methods. We 1Bt 2

should comment that in this last approach we neglect off-

diagonal self-energie&;;j(w), that one can expect to be The calculation of>/, () is based on an interpolative
small. This is exact in the DMF limit, with a lattice having approactf®-3*which follows the following.

infinite coordination number; in this case it has been siféwn (i) First, we look for>? () in the limit U;>t. This is

laa

thatEij(w)H_O and on_ly diagonal self-energies contribute t0the atomic limit that can be calculated exactly.
the electronic properties of the system. One should keep in (i) In a second step, we calculate the second-order self-
mind that this is a fundamental approximation in our ap- o(2) . . ~

) . . _energy2 " ¢/(w) using as the expansion parametgr't.
proach and that, accordingly, for low-dimensional cases with (iil) Third, we look for an interpolative self-energy that
low coordination our solution may faitegarding this point, ’ o ~ ) ~
see the discussion in Sec).\As our two methods, the LD Yields the correct limits fotJ;/t>1 (atomig and U, /t<1
and the self-energy approaches, are obviously linked througf$econd-order perturbative expansion

the correlation energy, we discuss both solutions together in (iv) The effective levels and correlation functions neces-
the next section. sary for the determination &/, ,(w) are calculated impos-

iaa
ing self-consistency conditions.

Ill. ANALYSIS OF THE RESTRICTED HUBBARD

HAMILTONIAN 1. Atomic limit

Let us first consider the atomic limib;/t>1. For this

Our starting point in this section is the “reduced” Hub- e o . : oo
case, it is sufficient to consider the atomic Hamiltonian

bard Hamiltonian

1

Hr:z ‘Ei(raﬁia(r_i_, 2 tia,jﬁeiTm)'ej,Ba' Hat:E ’Eigaﬁiaa'+ ZDI z r,:]icw'ﬁiﬁo" . (30)
lao la#|B,0 ao ao# Bo’
+1 > Uiﬁiwﬁiﬁg,, (25)  In Appendix A, we show how to calculate the one-body
2 iao# o’ Green'’s functions of this Hamiltonian, using the equation of

~ - _ motion technique. This procedure vyields the following
where we defineE?, =EZ +V! _+V*C in Eq. (25. We  atomic result
look for a solution of Hamiltonian25) by using Green-
function techniques and introducing diagonal self-energies
37 (w). This implies neglecting off-diagonal contributions, <

I1 <1—ﬁiﬁ0,>>

as corresponds to the DMF approximation. GV () Bo' #ao
iva (W)= ~ .
' w—EZ +i0"
A. Self-energy approach
Our first goal is to find an appropriate self-energy <ﬁiB(,/ H (1- ﬁiwﬁ)>
27 () for describing many-body effects within this model. S (yo"#iBo’)#ac
This self-energys./,,, allows us to calculate different densi- o' % ao w—EZ—U;+i0"

ties of statesp, 5 defining the following Green function

qua,k,B: H ﬁi,B‘T,
Gl kpl@)=[w6—H]} (26) teeet r (3D
jakpl@)=[w jakp: w—EZ—(2M-1)0;+i0"’

here é is the identity matrix and
where 2M is the degeneracy of thiexo levels. In this ex-
 ~oh . . ) -
HO = (BTN +37 ) 80pBik+ s (27)  pression a!Ltp))gssmle charge states of the atom give a contri
bution toG;<,)7 . Its evaluation requires the knowledge of the

I,aa

with E" =B+ U2 g0 2 a0Njpor 5 thenp?, ,5(w) is given  many particle correlationgn,eniger)s {MiaoMigorMiyer,

by etc. However, for sufficiently IargEJi, fluctuations in the
atom charge with respect to the mean chatk§e by more
than one electron become negligible, @) (w) is accu-

1
Plakp(@) == ZIMGig ip(@). (28) rately given by the three poles expression
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Al Al b7, =NF(1=N) = (M= Nige)df. (4D
Gi(at)(r% ! + !
o To _ 1) Nt To _ T} Nt
=B, ~Ui(Ni=D)+i0"  o—E—-UiN;+i0 2. Second order perturbation self-energy
Al 41 In the second step mentioned above, we calculate the
+ ' (320  second-order self-energy{?)(w). Conventional perturba-

w—EZ—Ui(N;+1)+i0"’
whereN;=Int{ ;] and ;=2 ,N;,, . In order to obtain the
exact first three moments of E@32), the weight factors
Aﬁi_l, Aﬁi, and Aﬁiﬂ, should satisfy the following sum
rules (see Appendix B

tion theory yields
Eilfcsczz)zoiz 2 de;dexdes
Bo'Fac Y T

Xpiao'(El)piﬁo’(EZ)piﬁU'£63) [f1f3(1_f2)

Aﬁi71+Aﬁi+Aﬁi+l:1’ (33) w+€2_61_€3+i0
+(1-f)(1-f3)f2], (42
(Ni—l)Aﬁi,lJr NiA,i,“i+(Ni+ 1)Aﬁi+1= > (ﬁiﬁ,,,>, wheref;=f(¢;) denotes the Fermi distribution function, and
Bo' #ao 34 pipo (w) are effective densities of states given by EH@$)—
(34 (28), taking effective levelsE? " instead of ECH+37 .
; oeff ; . . .
(N;— 1)2A§i_1+ NizAﬁﬁ (N;+ 1)2Aﬁi+1 The effective level&€,"" in theisite are introduced to fulfill

charge consistency conditions in theo levels as explained
~ L below, and are closely related to the LD solution introduced
= 2 (Nige)+ > (Nigg/Niyon). in Sec. II. Before going into these important points, let us
Bo'#ac (Bo' #yo")# ag discuss how to get an interpolative self-enebf,(w) be-

(39 tween the two limits U; /t—0 andU; /t—x) just presented.
Notice that Eqs(32)—(35) defineG{2Y” as a function of

laa

the mean charge{sﬁiﬁw and the two-body correlation func-

tions (Nj,,Niger). From G207, one can define an atomic

self-energy using the equation

3. Interpolative self-energy

This can be achieved noticing that

2 niBa”(l_niﬂa’)
~ o, B0’ Fao
372 (w)—0?

laa

30 =0—ER-[GM] L, (36)

- - (43)

whereEi”aH is the Hartree level. Using Eq&32)—(36), it can w— Eifﬁ

be shown tha (29 can be written as the ratio of two poly- )

nomials inew of the form whent/w—0. On the other hand, if we take formally the
limit U;—0 in Eq.(37), we see that

a7, U (w—E{,) +b{, U}

2'(320: = = = Lt = o2
I (0—E],+i0%)+cfUi(0—Ef,+i0")+df,U? Ev(at)ﬁL (44)
(37) Y (@—EZ+i0")
where
In this smallU; limit, we can assume thain; g, N;, )
a7, =(Ni= i) [ 1= (Ni—Nju0) ] ~NigyNiyor. Then,a’, goes to= g, - uoNiger (1= Nigyr),
and
+ . 2” <ﬁi,6'(r’ﬁiy<r">1 (38)
(o' #ye)# ao U|2 2 niBo”(l_niBo")
Cio-az'/\/i_niaa'_3Ni ’ (39) Eioofit)*) po7ao — - . (45)
(o—EZ,+i0")
di,= , 2 (MiggNiyor) Equations(43) and (45) suggest to define the following in-
(Bo#yo)Fao terpolative  self-energy, replacing wtEZ®™ by
+3N?_1_(3Ni_1)(-/\/’i_nia0)a (40) Gizzﬁo’¢aaniﬁo’(l_niﬁa’)lzigcsgz)(w):

s 572 a’,+(af,AE”/U;+ b /h ) (202)10)) s
| he, 1+ (8B D+ ) (S0P 0) + (e AL/ U+ d2) (35P e T)?
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where This condition guarantees tha¢(?) tends to the right limit
when o —o:
hio-a: 2 niﬁo”(l_niﬁa’) (47)
o' #aa E niﬁo”(l_niﬁ(r’)
and ~ Bo' +ao
3 - 07 i (53
eff & o—Ef,
AE(,=EL—EL. (48)
In this one-electron HamiltoniarE,}’C;‘aff plays the role of

i i U, o o(2) L
Notice that Eq/(46) yields (a) for Ui—0, 2., ~2{c2’s 4 effective level that substitutes fEES"+37 (w)] in

o a(2)77 I o
because\E{, and2{{2/U; goes to zero a¥; andhj, goes  Hamiltonian(27). When we compare Hamiltonia2) with
to a’,. (b) On the other hand, fot; /t—=, 37() can be  Hamiltonian(25), we realize thaE’*" plays the role of the
replaced byU?h? /(w—EZ®™ and 37  then goes to the following local-density level:
atomic limit.
&EI[{niao}]
0nia(r ’
The final step in order to determi{, (w) is to calcu-  whereE!' is the correlation energy associated with the many-
late nj4,, the correlation functiongn;,,n;z,) and the ef-  body term 1/Z, 55+ 4eUiNi 4oNi go -

fective levelsEZ:®" self-consistently. The charges and the Notice thatE?:*" should be determined to give the same
correlation functions are determined through the relations local chargen,,, as the exact problem and this shows that

B (54)

4. Self-consistency conditions

1 ~ aEI Nigo
M= =| HoImG @do, @9 goet_gory 78 UMiact] 59
T —e “ * élniao'
o In other words, the effective Hamiltoniai®2) we have to
> (NigoNigor) = > NigoNigo use to calculate the effective density of stajgs,(w) is
Bo' #ac Bo' #ac nothing else that the LD approximation associated with the
1 (= Hubbard Hamiltoniar(25). It should be noted that, in order
_ _~f f(w)IM[7, (o) to calculateE?:®" using Eq.(55), one need€'[{n;,,}] , a
U J —= task that we address in the next section.
; i Jeff s [
XG7. (©)]de (50) An alternative approach is to calcula®g:"" directly im

posing charge consistent conditions as mentioned above.

that follow from the general equations satisfied3§;,, and This consistency can also be written using Friedel-sum rules
and Ward identitied? In particular, as shown in Ref. 30, one

G?,,. We should comment tha s, yo7) £ aef M go Ni yor) _ N _
in Eqs. (38) and (40) can be obtained from Eq50) in the can r(_aplgce charge consistent conditions by the following
following way: equation:
~ -~ A ~ * o d io-aa
2 (niBU,niWn)= 2 (niﬂgrniwn) J',gof(w)lm Giaa(w) EPS do=0 (56)
(Bo' #yd")#ao ya' # Bo’
o which at zero temperature reduces to the Luttinger
-2 2 NigeMiao)- theorent? ensuring fulfillment of the Friedel sum rule.
Bo'#ac Summarizing this discussion: the effective le&],*" is

(51 introduced to calculate the effective density of states
o _  pias(w), the quantity definings??); that level can be de-
It is important to stress that the self-cpn5|§tent determinagermined using two complementary approach@s:in the
tion of the two-body correlation functio® g, N ), isan  first one,Ei"L;eff is given by the LD level of Eq(55). In this
essential ingredient of our approach for calculaiifg,. In  approach we need to know the functio®a[{n;,,}]1. (ii) In
other words, the atomic self-energy given by E87) de-  the second approack’;*" is calculated using Eq56). This
pends not only on the self-consistent changg, but on the  second solution can always be applied to any general case
self-consistent correlation funCtiOFEw'/;&/s(r'(ﬁiﬁwﬁiw/')- and does not depend on the previous knowledge of the cor-
These self-consistent parameters introduce in the interpolaelation energy associated with the local Hubbard term
tive self-energy>.,,(w), enough flexibility to yield an ap- 1/20i2i,w¢ﬁ,,lniwniﬁ(,, .
propriate interpolation between the atomic and second order We should comment that, wet€'[{n;,,}] known, one
perturbation self-energies. could obtainE{;*" more efficiently without having to use a
Finally, the effective level€7;,°" are chosen to fulfill the  self-consistent loop in the calculation. This justifies our in-
charge consistency between the value given by(E9.and  terest in obtaining'[{n;,.,}], as done in the next section.
the ones defined by the effective one-electron Hamiltonian: It is interesting to mention that, as shown by Georges
et al. (see Ref. 214 one can obtain a better description of the

H k= E{o™ S apt taks (52 density of states of our system by changing slightly the pre-
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scription to calculatg;,g(w) in 37(2) This approach offers

a very convenient way of calculating Mott transitions in

Hubbard Hamiltonians. The idea is to define a new density of

statesf)mﬁ(w) that incorporates in a more appropriate way

the effect of the environment. This is achieved by introduc-

ing inihe effective Hamiltonian defining the local density of E, %
statesp,4(w) the local self-energ./;; in all the j sites,

save the same sitewhere we are calculating; ,z(w). We E+ U,
should mention that this procedure introduces a new self-
consistent loop in the calculation, sinaeaﬁ depends on

375, @ quantity that depends ai{%)7 , itself a function of

E+20;

Piap- . ~ . .

“ FIG. 1. Shows the atomic levels+U;N;, associated with the

. | atomic Hamiltonian(31). A continuum density of states is assumed

B. Correlation energy: E'[Niqo] to be much narrower thad;
P

E'[{ni.,}] has been calculated by analyzing Hamiltonian
(25) in two limits: (i) first, we consider the cadg,; /t—, T TR U T BN
the atomic limit, with thei site practically decoupled from Eatomid {Niao}] 2U'§, Mo (1~ Niao)
the crystal;(ii) in a second step we analyze the caket 1
—0. In this limit, we calculateE'[{n;,,}], using second +2U(N,—N)(L+N;—A)). (6D
order perturbation theory. 2

Having studied these two casds;/t—0 ande, we in- It is interesting to realize that the potentd . associ-

troduce an ansatz f.dE [{Nies}] that interpolates between ated with this correlation energy is the followifigemember
those two limits. This procedure follows the same Strateg)fhat./\/=2 Nine):
| ac''lao) "

we have used to calculal®’, ,(w) and we can expect it to
yield also a reasonable approximation ®{{n;,,}]. We | JE"  _ ~
have checked that this is the case by analyzing simple clus- Vimr,atomic:an__:Ui(niao_M)+UiNi . (62
ters, where we can calculai[{n;,,}] exactly. e

This equation shows that the sum of the Hartree

1. U; /t— = Atomic limit EB(,,M,,UiniBU, and the correlation potentials yields:
We analyze this limit using the atomic Green function Vm%‘atomiczgiNi, (63)

[Eqg. (32)] and the following equation: B
a not unexpected result, as this many-body le\eN; , de-
Er dw pends only on the integer numbiy. In other words, in the
(0— Ei‘Ta)GfT,aa(w)ﬁ (57 atomic limit electrons are transferred to the atom one by one:
” each time one electron enters the atom, the new many-body

that yields the electron-electron Coulomb energy for an inJevel controlling how another electron can be transferred to

teracting electron gas. In tHa; /t— o limit, this energy co- the atom jumps byJ; due to the Coulomb repuilsion the new

incides with the correlation energy we are interested in. electron has wlth any other atomic eIec.tron. ~ )
In Eq. (32), we calculateAﬁi,l, Aﬁi , andAﬁiH using For the particular case that the atomic leizetU;N;, is

Eqs. (33~(35), (49), and(50); in Eq. (50) we can now use resonating with a continuum density of states, electronic

p h ic limit ai b hi charge can be transferred to the atom: however, this mean
for %7,.(w) the atomic limit given by Eq(37). This proce-  charge transfefless than one electrpreannot modify the

dure yields the following results: atomic level as the electron jumping to the atom does not see
itself. Figure 1 shows the different atomic levels of our
model Hamiltonian and their possible distribution with re-
spect to a continuum density of states, that is assumed to be

much narrower that); .
Figure 2a) showsE' as a function oh; for the degener-
, (59 ate case; =n;; =n; = - - -N;,, and four different levels; no-
tice the discontinuity appearing in the derivativeEfn; ]
for n;=1/4, 2/4, 3/4, and 1 or, equivalently, fot=1, 2, 3,
(60) and 4. Figure @) showsVME as a function of\; for the
same case; notice that this potential presents discontinuities
of valueU; for N;=1,2,3: this is in agreement with the gen-
valid only for U; /t—c. Then, we introduce these quantities eral result of Perdevet al®* for an atom. Cases for atoms
in the atomic Green function and obtain the following corre-having more than four levels are similar to the ones shown in
lation energy from Eq(57): Fig. 2.

E€ €= —E Imf

N;
ﬁi—lz./\_[iniaa[l_(M_Ni)]! (58)

2niaa’

Ni

(1+N;y)

Aﬁi:(l_nia0)+(Ni_M)|:1_

14N,
Al‘fliJrl:(M_Ni)_niao’(M_Ni)T
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FIG. 2. (a) Correlation energy<£ E') as a function ofy; , in the
atomic limit for 2M =4. (b) The sum of the Hartree and the corre-
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In Eq. (64), the sum extends upon all the possible values of
ao andBo’, and the factor 1/2 is included to avoid double
counting. Notice thaf(w”+ 0")—(w+ ") ] represents the
energy of the virtual excitation associated with two electrons
occupying thewo andBo’ states, and having initial energies
o and o’ and final levelsw” and o™, respectively. This
suggests to introduce the mean excitation enéigy, asso-
ciated with these virtual excitations and write for the second-
order perturbation energy

EI(Z)[{niaU}]

:_E % 2 niao’(l_niao)niﬁc’(l_niBo”)
i 2 Waﬁ '

Bo' +ao
(65)

where we already find the functional dependenc&'éf) on
Niqe- We should comment, however, thét,, itself also
depends om;,,, introducing a complication in our discus-
sion that we analyze below. For the time being, we shall
assumeW,; to be known and discuss the interpolative ex-
pression we propose for calculating the correlation en&'gy

for any value ofU/t.

3. Interpolative correlation energy

The correlation energy we are interested i, has to

yield Eq. (61) for U/t—c and Eq.(65) for U/t—0. This
suggests, if\V;=N; and hence the second term of E@1) is
zero, to use the following correlation energy:

1.
E'{nia}]=— 2 [EuiQEU Mol L= M) FOX) |
(66)

wherex== g,/ % 0o(U; W, g)Ni g (1= go), @ndF (x) be-

This limit can be analyzed using conventional perturba{,5yes in the following way:
tion theory. Figure 3 shows the different second order dia-

grams contributing, in the lowest order, to the correlation
energy (first order diagrams contribute only to the Hartree

energy. In the diagrams, electrons in thero andiBo’

states interact with each other creating virtual excitations that

contribute to the correlation energy as follo#s:

El(Z)[{niaU}]
'02

3o

X;i ao’(w);iﬁo”(w, )Eiag—( w”);iﬁo—'(wm)]

0" +o"—(o+tw')

E )
2 Fdwdw' do"dw”

Bo'Fac Y T EF

(64)

L
G, G,

FIG. 3. Second order perturbative diagram contributing'to

X, X—0,

F(x>=[11 o (67)
These two limits yield the appropriate values Bf for

U/t—= andU/t—0.
We have found that a good approximationR(x) is

X —X
F(x)=am+(1—a)(1—e ), (68)

wherea is a parameter fitted to the results discussed below
for a cluster. The general correlation energy, fge£ N; , is
written as a generalization of E¢6) in the following way:

1. 1.
E'{Niaot]=—2 {EUiE Nigo( 1= Nige) F(X)+ Eui

U
X(M_Ni)(1+Ni_M)g<Winiaa;M) } y

(69

whereg should fulfill conditions
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FIG. 4. Atomic model of X (3) levels(including spin inter-
acting with three “reservoirs” simulated by three sharp levels.

U; ~
0 faster than— for U,—0,
w

g— (70)

1 for Uj—w

in order to get the appropriate limits f&' .

4. Simple models: Characterization of the parameters
defining E'[{n 4o )]

We have determined in Eq. (68) and the functiorg in

P. POUet al.

PRB 62

and a, b, andc are parameters that have been fitted to the
cluster solution. Table | gives the parameters used for the fit
shown in Fig. 5.

In Eq. (72) we have used fox a dependence om g, (1
—Nig,), apparently different from the one given above, af-
ter EQ.(66). One should realize, however, that in the atomic
model we are consideringee Fig. 4, W,; andT are related
by the simple equation

T T

+
1/2 1/2 .
N2 (1=ni, )Y nip (1=, 12

iao iBo

W, 5= (73)

iao

Replacing Eq(73) into Eq. (66) yields the dependence &f
we have introduced in Eq72).

In Eqg. (72) we have also introduced the factorto im-
prove the fit to the results of the cluster model. On the other
hand, the second term of the right hand side of Ep)

shows the appropriate limits fdy/T—o andU/T—0. For
U/T—o, we recover the atomic limit, Eq61), while for

Eqg. (69, by analyzing the case shown in Fig. 4. Here, a{j/T_.0, this term contributes such &&/T3, going to zero

single atomi with M levelsa (2M including spin interacts
with M independent levels) (2M including spin). Each pair

of levels can accommodate two electrons, with spins up an
down, and all the electrons inside the atom interact with a

Coulomb interactionU;. The Hamiltonian describing this
system is the following:

N ~ At oa ~pon ~
H _2 Eilrania(r_'—Tz (Ciaocm0+cmacia(r)+m2 Emnma-
ao o

amo

+

N| -

E Uiﬁimrﬁiﬂ(r’ . (71)

ao# Bo’

The correlation energE'[{n;,,}], of this Hamiltonian
can be obtained by solving, first Hamiltonidil) exactly

more rapidly tharJ?/T (the order of magnitude of the sec-
8nd order perturbation contributipn
Equation(72) and the parameters given in Table | define
the correlation energ'[{n;,.}], for the particular case in
which all the 2V levels have the same occupancy. In Fig. 5,
we compare the exact values Bf with our approximation,
showing the quality of our fit. A more general correlation
energy is needed, however, for cases in which the occupation
numbers are different, as obtained by changing the relative
energy of the atomic levels and their hoppirgs .

This case can be obtained by generalizing the coefficients
aandb, as well as the term[n;,,(1—nN;,,)/T?], for values
of N4 # Nigy andT;,#Tiz. In Appendix C we discuss the
details of our interpolative procedure; regarding our present

and, then, following the prescription given in Ref. 26, calcu-PUrPoses, let us iny mention that, in this generalization, we
lating the Hartree and the kinetic energy. Our results fof€éPlace the previous parameters by valdey, (b), and

E'[{Nni.,}] are presented in Fig. 5, takingm=n;;=n;,
:...niao_

equa), for different values ofM (M=1,2,3 and 4 and

U, /T. For this particular case we have found tE4t{n; ,,}]
can be well approximated by the following equation

b
E'{iar}]= = 5012 Miao(1=Niar) F(0)

1.
+ U= ND(L+Ni—N)F(y), (72

where
D' 2
yzc(?l) nialr(l_nia(r)(M_Ni)l/2(1+Ni_M)l/21
X:E s Nigor(1=Nigyr)
T o' Zar Uz (1= i) Y2+ 107 (1= g,0) 2

(c[Niwo(1—Ni,0)/ T2 1), that interpolates between the cases

(all the occupancies of the different levels arePresented in Fig. 5, with the new parameters written as a

function ofn;,, andT;,. Thus we find

b)_.
EI[{niaa'}]: - %Ui% niaa(l_niaU)F(<Xiao’>)

1.
+ SUIN = ND(L+Ni=NOF((y)).

(74)

F(x) being
—exd —x])}, and

given by {(a)x/(1+x)+(1—(a))(1

niao’(l_ niao’)

T2 >(M—Ni)l/2(1+Ni_Ni)l/2,

<y>=U?<C
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FIG. 5. E'/U as a function of;, for differentU/T values, as calculated exactlyll line) and using Eq(72) (dashed ling (a) The first
set of four figures correspond to the cadd 2 2; (b) the next four figures correspond to2=4; (c) 2M=6; (d) 2M =8.

~ niBo—’(liniBa’)
Xiao) =i 2 .
< I > I.H<T,(¢a(7) Tia/n'llz (1_nia(r)l/2+TiB/n1/2 ’(1_niﬁlr’)l/2

iao iBo

We should stress that this equation applies to the simple model of Fig. 4. We can wr{f&lEg. a more convenient way
by replacingT;, by W, , using Eq.(73), which is still true in the cas&;,# Tz . This yields the following correlation energy:

|  (b) — 1 N
E [{niarr}]__ 7UIE niarr(l_nia(r)F(<Xiwr>)+ EUI(M_NI)(1+NI_M)F(<y>)! (75)

where
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FIG. 5. (Continued.

Di IV. RESULTS FOR THE MULTILEVEL ANDERSON

<Xiao>:ﬁ % ) Wiﬁ”iﬁo'(l_ Nigor), IMPURITY AND THE MULTIBAND HUBBARD LATTICE
(o ao @,

In this section we analyze the properties of the multilevel
Anderson model using the formalism discussed above. This
4c model has been extensé\éely used to represent a magnetic
TN_T)2( = - N2 A2 impurity in a metallic host and more recently to simulate
{y)y=Ui <W§> (M= N L N =) artificial atoms or quantum dot§:33-36-39
As a first case we reconsider the model of Fig. 4, where
an atom or quantum dot having a degenerady, 2s con-
In these equationsV,;,=W,+W,;, W, representing the nected to a reservoir. This model, with the reservoir simu-
mean excitation energy between the empty and the occupiddted by sharp levels, can give us a rough idea of how the
DOS associated with the orbital. charge transfer between the quantum dot and the reservoir
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TABLE |. Parameters, b, andc in Eq. (72) used to fitE' for Figure gb) shows similar results foe;—e,=2T. The
2M=2, 4, 6, and 8. exact solution of this case is even better reproduced by our
solution than the previous one, wittn, and n, very well
2M=2 approximated even fdd/T=16. We conclude that the case
u/T a b c g1—&,=T corresponds to the most unfavorable cafe
2 05 1.09 0.047 £1=g,, our results reproduce very well the exact solutjon
4 05 1.14 0.041 and shows that we can use with great confidence the approxi-
8 05 1.16 0.032 mations presented in the previous section up to values of
16 0.5 1.10 0.019 U/T~10.
32 0.5 1.02 0.010
2M=4 2. Quantum dots (2M=4)
2 0.83 0.89 0.013 As a more realistic model for a multilevel quantum dot or
4 0.83 0.85 0.015 an Anderson impurity, we consider the generalized Anderson
8 0.83 0.84 0.018 model given by H=Hy+H,+Hy, where H,
16 0.83 0.87 0.018 =Ememamm+ UE,>mﬁmﬁ, corresponds to the uncoupled
32 0.83 M6 0.92 0.012 QD (ny=d!d.); HresiEfekf:If:k to the uncoupled reser-
) 10 0.84 0.0080 voir, and Hy=3, tdi ¢, +H.c. describes the coupling
4 1.0 0.82 0.0080 between the dot and the reservoirs. The lalmland| (0
8 10 081 0.0082 sm,lsZM) in H denote the different dot Ieve!s in_clqding
16 10 0.85 0.0101 spin quantum numbers. We adopt the usual simplifying as-
sumption of having the same electron-electron interadtion
32 1.0 0.90 0.0089 .
between any pair of dot states.
2M=8 . .
When applying the formalism of Sec. Ill for the present
2 L15 0.87 0.0012 model we assume that the tunneling rate, givenily,
4 115 0.85 0.0016 =Ektﬁmk/(w— e,+10"), is independent of the energy. With
8 L15 0.83 0.0043 this assumption the effective densities of stgtedecome
16 115 0.85 0.0062 simple Lorentzian functions.
32 1.15 0.89 0.0063

As in the case of sharp levels we have studied the 2
=4 case for different values &f/A ,,. Figures Ta) and 1b)

proceeds. On the other hand, as the model of Fig. 4 can bsehow the charge per dot level as a function of the leads Fermi

calculated exactly, we shall use the comparison between tq?eger%%e;%g/()Ar“;gelgjfi?%?’ a; Carlgzlcar:e\(;\/gsggoegr?s\:vogr
exact and the approximate solution for analyzing the Va”ditycompparison the Hartree—Foin/ sc?lztion Ilzor the LD calc,ula-
of our appromeatio(ns)and, in particular, of the correlationtion we ne,ed to calculate the mean éxcitation enahgy
energy given by Eq(74). o . ) .

In a second step we consider a more realistic quantum d ssoc;ateddwnh_each orléltal, md o(rader tﬁ usfe Hoﬁ)' we
model where the electron reservoirs have a continuous de <_a(\)/% ound, uagg Eqgs .4) an (65), that for Eni
sity of states. Finally, we apply our approach to a multiband ™~ ~"*" Itis a good approximation to write
Hubbard lattice.

1/2

W,=2.52A | 1.25+ tarf s (76)

1
Nigo™ E

The comparison of the different solutions presented in
In this calculation, we present results for a nondegeneratkigs. 1@ and qb) shows that our LD calculation and our
case with M=4 (g,#¢,). The reservoirs are simulated by Self-energy solution yield very similar charges mainly in the
sharp levelgFig. 4). region U/A,,<10, where we can take our solutions with
Figure Ga) showsn; andn, as a function of the “Fermi great confidencén this caseA plays approximately the role
energy” (in this model, this is the energy of the sharp levelsOf T in the zero bandwidth limjt In Fig. 7, we can also see
simulating the reservoiysfor U/T=4, 8, 10, and 16, and that our correlated solutions present a substantial improve-
e1—¢&,=T. Exact results are given in full lines, the results of ment over the HF one. .
our approach are given in short-dashed lines, and the HF It Is interesting to comment hOW. our'self-energy SOIU“Q.”
results are given in long-dashed lines. Comparison betwee n be used to calculate the quasiparticle spec_tra_l densities.
exact and approximate results shows that our method yiel _h|s property depends strong!y on the c_harge V\."thm the_<_jot.
~ igure 8 illustrates the evolution of the interacting densities
reasonable values of; andn, up to U/T~10. For smaller  ¢"siate5 when increasing the charge inside the dot for the
values, sayU/T~4, our approximation is excellent, repre- fylly degenerate casee{=¢,). One can observe that for
senting a substantial |m[~3rovement upon the HF solution. We<1 0 the DOS consists of a broad quasi-Lorentzian reso-
should comment that fdd/T~ 16, our solution is also very nance centered slightly above the Fermi energy. This behav-
good except in a small region of energy for whioh+n,  ior corresponds to the so-called mixed valence redime.
=1; even in this case, our solution is reasonable. Whenn=1 the system is in the Kondo regime and the DOS

A. Multilevel Anderson model

1. Zero band-width limit 2M=4
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exhibits a narrow resonance around the Fermi energy anfbrm a square lattice with each atom having four nearest
two broader resonances at the charge excitation eneegiesneighbors. The case of a simply degenerate level with one
ande+U. These two resonances are in general not symmeglectron per site has been discussed elsewtéfedere, for
ric except for the half-filled case~2, due to the hole- the sake of completeness we only show in Fig. 9 the evolu-
electron symmetry® tion of its local DOS as a function &f/T. This is a case that
has been analyzed using the many-body techniques discussed
above. For sake of simplicity we have replaced the square
lattice by a Bethe lattice with coordination 4. As Fig. 9
In this section we consider the case of a multiband Hubshows, the DOS of this system evolves presenting a narrower
bard lattice, with the following Hamiltonian: band aroundEg for larger U/T values; eventually, a
Hubbard-Mott transition is found fo’/T=13. It is worth
N At A A commenting that this metal-insulator transition has been cal-
H__Ti,j(ENN) CiaffCJ“ferimr%U, UiiaoNiger (77) cyjated using the local-self-energy described in Sec. llI,
complemented with the consistent description introduced by
and analyze two cases, with either a singly or doubly degenGeorgeset al?* for infinite dimension, within the DMF ap-
erate level per site. In Eq77), we also assume the atoms to proximation.

B. Multiband Hubbard lattice: 2 M=2 and 4
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FIG. 7. (a8 Occupancyn;, as a function of the reservoirs level,
for the quantum dot model discussed in the textU(&=13.3).
Full line: self-energy solution. Short-dotted line: LD solution.
Long-dashed line: HF solutiorib) As (a), for 2U/A=8.
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FIG. 9. DOS for the two-dimensional Hubbard model discussed
in the text. Here, we consider a singly half occupied degenerate
level and differentU/T values. The Fermi level is taken as the
origin of energies.

Figure 10 shows the evolution of the local DOS for in-
creasing values ob)/T (as in the previous case, we use a
Bethe lattice replacing the actual gné-or this case, the
ground state is obtained by looking for a ferromagnetic so-
lution, with different occupancies for spins up or dow@ne
should notice that for this particular model the ferromagnetic
solution is degenerate in energy with a nonmagnetic solution
having charge transfer between the two levels in each site.
Differences between these solutions can only be obtained if a
more complete Mott-Hubbard model in introduced including
Hund rules) In Fig. 10 we also show the occupancies of the

As a second example we analyze the case of a doubly,, gitferent spin occupancies. FOrT=<13, the system ap-

degenerate level per site, with a quarter fillidgelectron per
site). This is a case that has received recently some attenti
as a model of a magnetic materf8lFor studying this case,

pears to be paramagnetic with a band structure that gets nar-

Xdwer aroundEg for larger U/T values, while, at the same

time, two main peaks appear above and belw ForU/T

including its band structure and the possible Hubbard-Mott
transition, we use the many-body techniques discussed

above, neglecting off-diagonal self-energies.
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FIG. 10. DOS for a Hubbard model, where we have a doubly
quarter-filled degenerate level and differésT values. ForU/T

FIG. 8. DOS as a function of the reservoir level for the same= 13, we show the DOS for both spins. RafT<12, the solution

model analyzed in Fig.(®) (2U/A=8).

is paramagnetic. The Fermi level is taken as the origin of energies.
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close toU/T=13, the band DOS evolves into a Kondo like
peak and, eventually, fdd/T larger than 13 the system ap- O”"—f

1 _ -
o= | (NN ==-¢,(r")e\(r)drdr’.
pears to be semiconducting, and behaves as a ferromagnetic Ir=r’|
system. It is interesting to compare this sqluuon with the on st , are the matrix elements of the pseudopotertidihe
found for the singly degenerate level: in both cases, theS i

. . . umsinv,u, . . .,extend only to the valence orbitals in each
metal-insulator transition appears fof T=13. This shows  ia;
that the solution of the doubly degenerate level can be un- The many-body terms of Hamiltoni&@@8) include differ-

derstood in terms of the simply degenerate case: as soon g5t yynhes of contributions, among them the Coulomb inter-
U/T is large enough for yielding an insulator in thevi2 tionsU, and J,, appearing in the generalized Hubbard

=2 case, the second level is repelled to higher energies angymiitonian discussed above, and hybrid interactions as
the system becomes ferromagnetitVe should comment  ~-~:- o . .
hnc'c. In all these contributions only three different orbitals

that in our solution for 81 =4, the two states with the oc- e involved at most. We can separate these terms and write
cupied spins become equivalent to the singly degenerate ca £ Lo P i
e many-body contribution as follows:

of the model discussed aboye.
These results can be checked by comparing with recent

calculations by Homoet al** who analyzed the same struc- 5 > OmelEl ChpiCup=2 UnyN,
ture with different band-filling factors. In the half-filled case, voouko’ v
those authors have found the Mott-Hubbard transition for 1
U/W=3, whereW is the band-width of the initial DOSin SR SN B T W
our caseW=4T), in agreement with our results. 2 w#v,o0"
V. DISCUSSION: HOW TO APPLY PREVIOUS RESULTS + 2 hx,mnm/clgcﬂa
TO CRYSTALS AND MOLECULES u#v\oo!

In the previous sections we have shown how to introduce, _ x oAt A E vu At A
within the local density dynamical mean field approximation, w;,)\,g M oMo CuoCuo™ 2 NZN Oux(CuoCor)
the exchange-correlation potential associated with a general- at -
ized Hubbard Hamiltonian. Models based on this Hamil- X(C,,/Cror) +other terms, (80)

tonian are often used for analyzing the electronic properties X
of highly correlated systems. Although they provide a goodWhereUV’ Jowr o, andhy

qualitative description, new terms have to be included in the 1

Hamll_toman in _order to get a satisfactory quantitative de- hh,w:f gof(r) ——¢,(1")e,(rdrdr’, (81
scription of realistic systems such as molecules or solids. In [r—r’|

this section, we discuss these new many-body terms and

show how this more complex Hamiltonian can be solved 1 . L
using the ideas discussed above. In particular, we compare ;‘,w=f e e, (1) ==;e\(r")e,(r")drdr’,

the results obtained by this method with standard approaches [r=r]

such as DFT-LDA or GGA calculations in solid state theory, (82
and configuration interactiofCl) in quantum chemistry. The

discussion concerning small molecules is particularly rel- U :J' 2(1)
evant, because it illustrates how to go beyond the dynamical v @
mean field approximation.

are defined by

@2(r"ydrdr’, (83)

r=r’]

A. Bulk solids szf oX(r) e2(r)drdr’. (84)

We write the general Hamiltonian for the crystal electrons

as follows: Notice that among all the remaining contributidd¥y we
have singled out those wheteu,w, and\ belong either to
H=2 (6, 4V N0t 2 (L, otV )CL,Con one atom or to nearest-neighbor atofirlicated by= ).
V.o ’ " opFve ' ’ These are the terms which have to be retained in order to get
1 a good description of the energy of the system. The most
At ot A . A : ) .
+ = 2 OZ’{CIUCWMU'CW, (78) important contributions Xy come from the dipole-dipole
voouho’ interaction given by the terms where#wei,u#\
ej,oo’, and from the exchange interaction

[r=r’]

wherev=i,a and

- %E,uvﬁ V‘J):/,uﬁva'ﬁ/.urv where
—[ V2 Z, _
€,= soV(r)(———Z ———|¢,(n)dr, T —
f 2 a |I'—Ra| Ji#:J'goy(r)(p'u(r)ﬁgpy(r’)¢M(rr)drdr’_ (85)
2
t, :f e, (N — V__Z _Z“_ e, (ndr, (79 We have found that the rest of the terfilabeledother
a 2 G r-Rr,) * termsin Eq. (80)] give a very small contribution to the total
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energy of the system and are going to be neglected. Weca® 34— v 7 — 1 1T T ]
this approximation the LCAO-OGorbital occupancy ap- 38 @) .
proximation. 38l ]
The resulting LCAO-OO Hamiltonian reads as follows: ol ]
HOZ% (ev+vﬁyyg)nm+yg, ) L 5wl 1
1 :Cj -4,6 .
+ 2 U N VTnVl + E E JV/,LnV(Tn/,L(J'/ 48 | e, ]
v v#,u,a',(r/ -5,0 T
1 AT A Py B -5'25.1 T 52 53 54 55 56 57 58
+- oy /Cro ' : ' ' : : ' '
5 2 O(€1,C00)(Chyrra), (86) N
where thehoppingterm ']'VM » is defined by FIG. 11. Cohesive energy of Si as a function of the lattice pa-
' rameter for(a) full line, our LCAO-OO model;(b) long-dashed
~ ~ R line, FIREBALL; (c) short-dashed line, LDA; an¢) dotted-dashed
TV,M,O': tV;L+V5fL,O'+ 2 h)\‘y,un)\o./_; hi‘yﬂn}\g . |ine’ GGA
No!

(87) implementation of the method and the use of a extended

We can now make contact with the generalized Hubbardasis(includingd orbitals will be published elsewhere. Here

Hamiltonians discussed in the previous sections introducingve focus on the comparison of our m%hod with another
the Hamiltoniarﬁ:[o: localized orbital scheme such Rg®EBALL96,”" where a mini-

mal sp® basis is also used, and standard LDA and GGA
plane wave implementations. THeREBALL96 calculation

7~io= E (€,+ Vgi,g)ﬁwﬁ ; TVM,U(A:,T,Uf:W uses contracted atomic orbitals generated with a cutoff radius
vo VFE QT _ 13
R.=5 a.u’
o 1 o Figures 11 and 12 show the results obtained with the dif-
+>, U,n,n, + > > 3,00, (88)  ferent methods for the total energy per atécohesive en-
v v ergy) and the exchange-correlatiodC) energy per atom as

a function of the lattice parameter. In all the cases we are
i i S taking as a reference for the total energy or the exchange-
cupation numbenm, . This Hamiltonian7{, is now com-  qrrelation energy the value calculated for the isolated atom
pletely analogous to the generalized Hubbard Hamiltoniangith the corresponding method. Notice that in the case of
we have considered so far and can be treated using the €GHrepaiL and the DFT-PW calculations we have to include a
mquesAdescnbAed in Secs. Il and IIl. For the difference be¢qrrection for the spin-polarization energy in the calculation
tweenH, andH,, H,, We propose to use a Hartree-Fock of the total energy for the isolated atom. We have taken a
approximation. Thus, the total enerdsy of Hamiltonian  value of —0.65 eV, according to Ref. 42. In order to make

(86) is calculated as the sum &, the ground-state energy the comparison between our method and the other ap-

o proaches meaningful we have to include in the LCAO-OO
of Eq. (88), and the Hartree-FockF) mean value 06, Hartree energy the electrostatic self-interaction energy asso-

X ciated with each orbital occupancy, a term that is automati-
(Ho)ue=— > | > QN LN [ IO, cally not included in our approach. Table Il compares the
vEmO [N total energy and XC energy calculated with different meth-

1 ods for the experimental lattice constant 5.43 A. The well

+3 % OA (N oM vwo— NinoNuws). (89 known overestimation of the cohesive energy by all the

whereT,,, , is given by Eq.(87), replacinAgﬁW by the oc-

-4,0 T T T T T T

Regarding the solution of Hamiltoniai@8), it has to be
noticed that the intra-atomic Coulomb interaction within a
sitei, sayU,=U;, andJ, ,=J;, s, are different from each
other, at variance with the generalized Hubbard Hamiltonian
(1) that we have considered so far, where it was assume(s
Uie=Jiaig=VU;. In problems where an atomic minimal ba- =
sis is used, one finds that the differences between those iriu
traatomic interactions are small. In these cases, it is well
justified to calculate the intraatomic correlation enefgly
with Eq. (75), using for each orbitala a different Coulomb
interactionU;,, defined by U;,—J\N).

We have checked the accuracy of this approach consider
ing the case of bulk Si. We have used a LCAO-OO Hamil-
tonian with an optimizedp® minimal basis. Details of the FIG. 12. As in Fig. 11 for the exchange-correlation energy.

58

Latt. Par. (a.u.)
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0o
U, . . . .
i 10703 iBo io o
ifo”

TABLE Il. Cohesive energyk,,) and exchange-correlation en- (a)
ergy (Exc), both in eV, for bulk Si calculated with different meth-
ods for the experimental lattice constant.

LCAO-O0O FB LDA GGA Exp.

a L a

Eror 3.95 5.00 5.10 4.65 4.60
Exc 5.23 6.15 5.60 5.10

) iﬂc’<> iBo’ iﬁc’<> iy’ iB's i’
methods based in LDA is clearly shown. GGA considerably U U, U, % % U, U, U,
improves the result of LDA calculations. The LCAO-OO i ioo ioG ioo ioG ifo
method is the only one providing an upper bound to the
cohesive energy. This is related to the better description of o b: b
the XC energy(see below and to the fact that both our
LCAO-OO and therIREBALL96 calculations use a minimal o< > jp'o’ iBo iBo e jous
basis: more complete basis will be needed in order to get ¢ :

. . . U; Uj U; Uj Jij Jij
converged value of the Hartree and kinetic energy contribu- . D )
tions. ioe Jo'c oo jo'c oo io

A fairer estimation of the relative merit of the different b b b

methods in the descrlptl_on of the e>_(change and. correlation FIG. 13. First and second order perturbative diagrams contrib-
would therefore be provided by a direct Comparlgon of th.euting to the total energy of the Hubbard Hamiltonian. Only a few
XC energy. We assume that the Hartree and kinetic energi€S,.ond order diagrams are shown.

are well converged in the DFT calculatioftsoth LDA and

GGA) with a plane wave basis. Using these values and thehe conditionn:

. ; ) ) iaoigo="0 IS not satisfied due to the reduced
experimental Si cohesive energy we can determine that th§‘ymmetry in the molecule. Recalling the results in Sec. Il B,

value of the XC energy, at the experimental lattice paramsyiq implies that the exchange holeth;,,) is not com-

eter, should be 5.10 eV. Our LCAO-OO approach is withinetely 1ocated beyond the local siteA fraction of this hole

an error of only 0.1 eV when compared with that value,jg 555 |ocated inside the atoi increasing the effective
while all the LDA based methods significantly overestimate; ;oo tion.J: betweem, .. and its hole (+n.,.), due

the XC energy. The GGA approximation improves over they, yho Iargt’arI intra-atomic coulomb interaction.

LDA resultsz providing a vaIue_ clqse to our LCAO'OO. We analyze this case introducing a factdmn,,,) that

method. Notice that the overestimation of the XC energy Makes into account the hole fraction located inside thei sie

FIREBALL96, larger than the LDA-PW case, is mainly due to value that can be calculated from the density maifj(w)

a further approximation used for the fast evaluation of th%see Eq(12)]. Thus, we write the exchange and extra-atomic
exchange-correlation matrix elemerisge Sec. IV D in Ref. correlation energy ,as follows:

13). When this approximation is improvédsing the method

proposed in Ref. 21the XC energy comes closer to the B 1

LDA-PW result. EUniaot]== 5 2 JiaMiao(1-Nigo),  (90)
We conclude from this analysis that our LCAO-OO ap- i

proach, using the formalism discussed above, seems t0 prQjare

vide a very good description, comparable to the GGA ap-

proximation, of the exchange-correlation energies in the Jia=(1=x;,) 3N+ x,,U, (92)

limit of low correlation, as shown in the case of bulk Si. Our e t e e

method combines a significant improvement over the LDAandU; is the mean Coulomb interaction in the sitén our

approach for this low correlation limit with the ability to approach, Eq(90) replaces Eq(20) for x;, different from

describe the high correlation limit tested in Sec. IV. zero (in other words, forn;,;z,#0). Notice that for the
sake of clarity we have assumgg, and thusJ;, to be spin
B. Small molecules independent, but the formalism can be extended in a straight-

égrward manner to the case of spin polarization.

The second example we address in this section is the ca:
. . o On the other hand, we have to change also our treatment
of molecules. Our basic approach to this system is similar to . . . i
the intraatomic correlation enerds/[{n;,,}] for Hamil-

thg one discussed abave for crysta!s.AWe take as the_ startn,? nian (88). It is convenient to discuss this point by consid-
point the same LCAO-OO Hamiltonial, [Eq. (86)], which

, : ering first the DMF approximation discussed above from a
we also reduce to the generalized Hubbard Hamiltof&n  gifferent perspective. To this end, consider the first and sec-

(88)]. As in the case of crystals, we approximate_the gro_und-ond order Feynman diagrartshown in Fig. 13 contributing

state energy of Eq(86) E, by the one associated with (4 the energy of the system. In the DMF approach the first

Hamiltonian[Eq. (88)], E,, plus the contributiod §Ho) e, order exchange diagrana{ in Fig. 13 yields Eq.(20), since

in similarity with Eq. (89). the exchange hole is located in the nearest-neighbor sites
The analysis of Hamiltonia(88) for molecules has to be (remember that we assumag,.iz,=0). Now, we consider

changed, however, with respect to our previous discussiothe second order diagrams. In our approach so far we did this

for the following reasons. First of all, we have to realize thatintroducing the reduced Hamiltonia(25). The important
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the diagrama, in Fig. 13. In analogy with the DMF, this
result suggests to introduce screened values of the interac-
tions that we define for the new case as follows:
S ~
;'J' Uia:Uia_‘]ia! (93)
s
jij = 0
-1.41.5 ‘ 1:6 ’ 157 ’ 1:8 ’ 1:9 ’ 270 ' 2:1 . 272 ’ 213 . 254 ‘ 215 ’ 256 ’ 2:7 ’ 218 ’ 29
@ DRI (ad) We also reach the same conclusion, considering how the
000 [T total exchange-correlation energy appears as a modification
ozl T g of the initial hole (1-n,,,), that is partially changed into a
050 L T ] new correlation hold;,.(1—n;,,). This can be understood
ors more clearly if we write[following Eq. (23)]:
? -1.00 | H oy 10558 .
T st 9_ H . 1
asok \OH ] EXC[{niaa}]:_E IE (1_fia0)‘]ianiao(l_niao’)
175 | g 1
b T T "3 2 farVioMeo(1 M) (99
(b) Distance (H-O) (a.u.)

FIG. 14. (a) Second order correlation energy for HF: full line, \yith fi,, representing the new correlation hole fraction in-

diagonal term; dashed line, off-diagonal ter(n) Same for HO. side the sitd. Equation(94) shows that (;,—J.,) is the
Calculations are performed using an optimized minimal basis: HF; oo b : - . )
H(18) F(152,252,20%): H,0: H(15) O( 12,252 207 effective interaction associated with the correlation fluctua

tions created by the intrasite Coulomb potential, in agree-

point to notice is that the introduction of the reduced Hamil—men.t with EqQ.(93). Th'?’ result.suggegts to CaICl.Jlate the cor
tonian (25) is equivalent to the replacement of the different relation energy associated with the intra-atomic fluctuations

U andJ interactions by the screened values given by using the screened interactiods, = U;,— J;, andJ;;=0. In
the DMF approximation, this energy is calculated in second

U= Ui—JiNN, (92 order perturbation theory using only the diagramin Fig.

13. In the case of systems for whiah,,.;z,#0 and
3. =o0. Niqo:ige# 0 We also have to include other diagrams, similar

ij —~
to the ones shown in Fig. 13, which are proportionalfoor

.Th|s.|§ physmally very re.asonablle, because in a Iattlcegioj_ Consider first the diagrams labeléd, b, and b,
with infinite dimensions, the interaction between charges IOWhich are provortional t&)2. One can prove easilv. usin
cated at different sites are screened out completely by thei1 ‘IJ Ep 101, th P h P ¢ dY’ 9
charge induced in the nearest-neighbor sites. Moreovef € SUm ruldEq. (10)], that when we move from diagrams

charges located in the same atom see also the screenédto b, andbs, the contribution of these second order terms

~ 1(2) . .
charge cloud that reducesto U, = U, — I, with JNN being 5) E"'“’ decreases in every step faster than the fraction of

the interaction between an electron located in the atom an Ole.x”“’ [see Eq(91)] that bec_:omes Iocaliz_ed in the atam
that charge cloud ypically one finds that the diagratm, contributes roughly
. . o ~ i asX,./2 times the diagranb,. Similarly, diagramb; con-

With the new effective interactionis; andJ;; we find that  ipytes likex; ,,/2 times the diagrarb,. On the other hand,
only the diagrams witttJ? or U;U; contribute to the second we have found in typical casésee belowthatx; ., is never
order energy. We should also realize that in the DMF apdarger than 0.2—0.3. Then, we conclude that one can neglect
proximation all the interatomic off-diagonal terms,,.jz,  the diagram$, andbs; with an accuracy better than 15% in
can be neglectedremember that we have assumed thatthe calculation of'(?.
Niasipe=0 inside the atom This shows that, in a second  Consider next diagrants, andbs. We also find that dia-
order perturbation theory, only the diagram labdbgdn Fig.  grambs is negligible compared with,. However, we have
13 contributes to the energy. This is precisely what we confound that diagranib, can be important and ,in some cases,
sidered in Sec. lll as part of the argument leading tocomparable to the contribution given by (see the discus-
E'T{Ni 00t ]- sion below.

Coming back to the case of molecules, we have found that This means that in second order perturbation theory, we
in the exchange-extraatomic correlation energy" is  can calculat€'® using only diagram$, andb,. Thus, we
changed by, [Eq. (91)]. This is equivalent to introducing should replace Eq65) by the following expression:
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E'A{n; 40t molecule angle constant, and change simultaneously both
5 HO distances. These results show the importance of includ-
U2 Nigo(L=Nige)Nige (L= Nigyr) ing the second term of Eq95) for the accurate determina-
= _Ei o E ) W tion of the correlation energy for small molecules. At the
ao#po “p same time, they confirm that its relevance decays rapidly
0.0, with the number of atoms in the molecule: the off-diagonal
-y = > contribution of Eq(95) is much more important for HF than
iy 2 o' o' (#ac),Bo# B o' for H,O. F and O provide the larger contribution to the in-
5 ) traatomic correlation energy in these two molecules. The re-
X(”ia,J,&r) (Mia’jpo’) (95  duction in the contribution of the off-diagonal terms is re-
Wélﬂ ' lated to the number of neighbors that each of these atoms has

) ) _in the corresponding molecule: while F has only one neigh-
wheren;, ;5. is an off-diagonal component of the density poring H in HF, the oxygen has two H atoms as neighbors in
matrix, andW&B the mean energy of the virtual excitations H,0.
associated with the;, ;s,(w) density of states. In order to calculate the correlation energ¥{n;,,,}] of

In order to understand the importance of the second terrthe molecule to all orders it);, we have extended our ap-
of Eq.(95), we consider first two different limiting cases. For proach of Sec. Ill, and introduced an interpolation between
a diatomic mozlecule, with a strong covalent bofikink of  the U;— < and theU;— 0 limits, taking into account that the
H2), (N1152150) “= N1so (1= N11sy) = N21se (1= N21s,), @nd it dominant term contributing t&'[{n;,,}] for molecules,the
is easy to see that the second term of @§) yields the same first term in the right-hand side of EG75), can be approxi-

contribution as the first one. On the other limit, consider amated by a similar expression witk,, redefined by the
crystal with an orbital per site having Z nearest neighbors. Irequation

this particular caséassuming the exchange hole located in

the NN sitey, we see that[Egs. (12, (13)] Z(Nnya,)?

=n,,(1—n4,). Then we can conclude that the second term U
of Eq. (95) is Z times smaller than the first one. This simple Xigo= D _Ini,Bu-’(l_ni,B(r’)
argument shows why we can expect the second term of Eq. o' (2 ao) Wap

(95 to be important for molecules having localized bonds,
and negligible for system having resonant bonds, such as Si.
A detailed calculation of those terms confirms that the rela-
tive contribution of the off-diagonal diagram decays very
quickly with the number of neighbors. Figures (a4 and (M, go)(Miar 57 )?
14(b) show our results for HF and J®. In both cases, we X Niwo(1—Nino)
calculate, using a minimal basigHF: H(1s and

F(1s,2s,2p), H,0:H(1s), and O(X,2s, and )], the first  where the second term represents the new off-diagonal term
and second term of Eq95) as a function of the distance associated with the diagrams of Fig. 13. In practice, we cal-
between atoms. Notice that in the case gftwe keep the culateE'[{n;,,}] defining a parameten, ., such that

Uj
+
i(#i),a' 0’ (# @0),Bo+ B o’ W;B

, (96)

E (Dj/W;ﬁ)[(nia,j,B(r)Z(nia’,j,B’(r’)Z/nia(r(l_nia(r)]
j(#i),a’ o' (#ao),Ba+p o’
Niac™ 1+ (97)
2 (Ui Wap)Niger(1=nigy)
Bo' #ac
|
and replace, in EQ.75), Xi 4o BY 7iaoXiao - method can be applied to calculations with extended basis.

Our proposal provides a very good description of the corFigures 16a) and 18b) compare the total energy for HF and
relation energy. Figure 15 compares our estimate foH,O calculated with a minimal basiglashed lingand more
E'[{n;..}] with the result of a standard configuration inter- complete basis(continuous ling [HF: H(1s,2s,2p) and
action(Cl) calculation for the HF molecule. We have used inF(1s,2s,2p, and 3), H,O:H(1s,2s,2p) and O(Is,2s,2p,
both calculations a minimal basis. The agreement betweeand 3)]. These results confirm the variational character of
the two results is excellent, in despite of the quite differentour approach. Finally, it has to be emphasized that our ap-
complexity of the two methods. This is specially importantproach provides a significant improvement over other ap-
considering how the computational effort increases with thgoroximate methods commonly used in quantum chemistry as
number of atoms in the molecule: the cost of our methodVioller-Plesse{MP) calculations'* MP calculations provide
increases linearly with the number of orbitals, in contrasta good description of the correlation effects close to the en-
with the factorial behavior of Cl calculations. The sameergy minimum. Our approach reproduces well that distance
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FIG. 15. Correlation energy for HF calculated usi@ a Cl YT ’ ' ' ! ! ! J ' :
method(full line); (b) our approacidashed ling 2r ]
L ]
_ _ ol H 1055 o
range(as shown in the examples abgwnd provides avery | ]
good description of the highly correlated limit relevant for 3 [ ]
large interatomic distances. 5 [ ]
(] L 4
TR b
5k -
VI. CONCLUSIONS sl N
The main body of this paper is addressed to analyzing g P s A SR SRR P S
. . . . P 1.3 14 1.5 1.6 1.7 1.8 1.9 2.0 21 22 23 24
generalized Hubbard Hamiltonians, showing how within a (b) Distance (H-O) (a.u.)

DMF approximation one can find either a local density or a
many-body solution. In our LD approach, we show how to  riG_ 16. (a) Binding energy for HF: full line, optimized minimal
define an appropriatidcal potential associated with each of pasis; dotted line: H(4,2s,2p)F(1s2,252,2p2,3d). (b) Same for
the localized orbitals used in the LCAO Hamiltonian. In our H,O0. The extended basis used in this case is the following:
many-body solution, we introduce an appropriate self-energy(1s,2s,2p) O(1s?,2s%,2p?,3d). Experimental heats of formation
for a degenerate multilevel case and calculate, using converiRef. 43 for these molecules are: 6.120 €WF) and 10.167 eV
tional Green-function techniques, the general electroni¢Hz0)-
properties of the system.

We have applied these ideas to a multilevel AndersonAPPENDIX A: CALCULATION OF THE ATOMIC GREEN
model of an impurity, a quantum dot or a lattice, and have FUNCTION

found that our results can be applied to an extensive range of 1o stomic Green function of HamiltonidB0) is calcu-

parameterstypically, for U/T=10) that covers most of the |5teq using the conventional equation of motion:
cases one is interested in.

In a second step, we have also considered how to use our A A A
previous analysis for studying more general cases, say, crys- o((A;B))=(0|AB+BA|0)+ (([A,H*];B)), (A1)
tals or molecules. We have shown how one has to extend
generalized Hubbard Hamiltonians to analyze these cas&ghere A and B are general fermion operatord)) is the

and have found, considering the crystal Si and the moleculeg;ound state of the atomic system, e(m@‘.g» the Fourier-
HF and HO, good results for the ground state energies 0egansformed in time of the retarded Green functiemd(t
these examples. This comfirms, not only the validity of Our—t’)<0|A(t)I§(t’)+ B(t’)A(t)|0)

approach for generalized Hubbard Hamiltonians, but also, Starting withA— & andé—é e 0btainG@” as a
the validity of our extension to more realistic systems. In i ' ng' t_ 'g‘fd G N 'E;;f’ V\; N1 aa
conclusion, we expect to have shown that the approach préynC lon of new two-body reen functions

sented in this paper offers a very promising method for ana-

lyzing in a very realistic way the properties of highly corre- - ” ~ . -

lated SyStemS. ((1)_ Eia)Gi(za12 =1+ 2 Ui<<cia(rniﬂfr’ ;CiTa0>>'

Bo' (#ao)
(A2)

f
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APPENDIX B: THREE-POLE APPROXIMATION
FOR THE ATOMIC GREEN FUNCTION

The coefficientsA;; of the Green function

@ Al
o —Ei"a+i0+ —E’ —U;N;+i0"

+ ALZIMfl
w—EZ—Uj(2M—1)+i0"

(B1)

with A7 given by Eq.(31), can be found directly to satisfy
the following sum rules:

2M -1
2 An= (B2)
n=0
2M -1
> A= X (Nige), (B3)
n=0 B(T/iao'
2M -1
> nPA= X (Mgt X (M g Niyr)
n=0 Bo' #ao (Ba")#vyo")#ac
(B4)

POUet al.
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(more general polynomials can be easily used in the form
explained below

In the mean valuéc[ N ,,(1—Nj.,)/T?]) we find differ-
ent terms, behaving as

(O) s Iaa’( niaa—)
i\ 7/ (2M) - (C2

where c; is a constant. Our way of defininge[ N (1
—Ni,,)/T?) implies replacing terms such d€2), by the
equation

s+1
3/s+1 3/s+1
E n|aso' ) S+

|Cl(T

c,Ur (C3)

2 T2k+2 Ia/o'(l nlcw')2

Notice that fom; ,,=n; andT,=T, Eq.(C3) goes into(C2),
since the term multiplyingc;U" in Eq. (C3) behaves as
(2M)® and the other factors are immediately recovered.

with higher sum rules associated with correlation functions Equation(C3) is introduced taking as the weighting factor

depending on more than two particles. Equati@@®—(35)
are particular cases of EgB2)—(B4), for the Green func-
tion of Eq. (32).

APPENDIX C: GENERALIZATION OF EQ. (73

Here, we discuss how to generalize E£p) into the form
(74), where new values{a), (b) and {c[nj,,(1
—Ni,0)/T?]), have been introduced.

Consider, as an example, the third ca&gn;,,(1

—Ni,,)/T?]). Values ofc for different U/T and M have

been given in Table Il. Assume that these values can be fitte

by an interpolative equation that takes the form
o)’ 2M
T

€y

2
+

D 2
T

U U
c= co+c(’)T+cg T c1+ci?+c’l’

)
+ cz+c§T+cg (2M)?

of each orbitalnizw(l—niw)z, and adjusting th& power
and then;,,(1—n;,,) power of the numerator to the limit
given by Eq.(C2). Another example, coming from the aver-
age ofa, would be the term

|

ith @, also being a constant. In this case, we replace Eq.
4) by

(C4

—|| e

) (2M)%,

s+1

2/s+1 2/s+1
|C¥O’ (1 nlao’)

bE

aUr

(C5)
> T2 (1-n;,,)?

ao
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