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Local-density approach and quasiparticle levels for generalized Hubbard Hamiltonians
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This paper presents a general method to describe and analyze electron correlation effects in local-orbital
electronic structure calculations using a generalized Hubbard Hamiltonian. In our approach, we first introduce
a local density formalism where the total energy of the system is obtained as a function of the orbital
occupancies$ni% associated with each local orbital; in particular, exchange and correlation local potentials are
presented for a multilevel case. In parallel, using the dynamical mean field approximation, a many-body
solution is obtained by means of a local self-energy that appropriately interpolates between the low and high
correlation limits. We also show that the local density and the many-body solutions are linked through charge
consistency conditions. These two solutions are applied to a multilevel Anderson impurity and to a multiband
Hubbard lattice, our results showing the high accuracy of the approach presented in this paper. Further on, we
discuss how to apply our previous analysis to the case of crystals and molecules and analyze several examples:
bulk Si, and HF and H2O molecules. The good results obtained for these cases show that our approach for the
description of correlation effects offers an interesting alternative to the well-established density functional

methods based on the calculation of the electron densityr(rW).
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I. INTRODUCTION

The prediction of the electronic and geometric structure
a solid requires the calculation of the quantum-mechan
properties of a system of interacting electrons in the prese
of a given configuration of nuclei. Different approaches ha
been developed over the years to handle this complic
many-body problem. Density functional theory~DFT! ~Refs.
1–3! provides an exact mapping of the problem of a stron
interacting electron system~in the presence of the nucle!
onto that of a single particle moving in an effective potent
due to all the other electrons. With this approach, proper
such as the total energy of the system could be calcul
exactly. However, the effective potential—in particular, t
so called exchange-correlation potential—is not known
actly and further approximations are needed. The local d
sity approximation4 ~LDA ! assumes that the exchang
correlation functional is purely local and can be calculated
a function of the local charge density. This approach p
vides accurate total energy differences between related s
tures but total cohesive energies can be in error by more
20%.5 The generalized gradient approximation6 ~GGA!,
where both the charge density and its gradient are use
calculate the exchange-correlation functional, improves
LDA results but does not fix completely the problem wi
the cohesive energies. Although total energy calculations
be performed quite accurately with these approximatio
neither of them provides the correct quasiparticle spect
of the system.5 A new approach based on an energ
dependent nonlocal functional is necessary for this purp
and further approximations are needed to make the prob
tractable. The GW approximation7–10 has been applied to
metals and semiconductors and provides an energy spec
in good agreement with the experiment. We also mention
LDA1U method11 which offers a very simple way of cor
recting for the main deficiency of the local density appro
PRB 620163-1829/2000/62~7!/4309~23!/$15.00
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mation as far as band gaps are concerned.
All these methods have been traditionally implemen

using a plane wave basis for the expansion of the electro
wave functions.12 Recently, different methods based on loc
orbital basis have been developed.13–22 Local orbital basis
sets may be used to improve significantly the computatio
performance of electronic structure calculations. For
ample, efficient first-principles tight-binding molecular d
namics methods can be devised using appropriate atomic
basis sets, and order-N algorithms can be easily implemente
in a local orbital framework.23

On the other hand, local orbital schemes are the nat
playground for the models, such as the Anderson or Hubb
Hamiltonians, which have been used to describe syst
where correlation effects are so important that the band
ture, implicit in all the approaches described above, bre
down. The established methods in this field are based
Green’s functions and self-energies which are naturally w
ten in terms of local orbitals. This reflects the fact that t
more important contributions to the correlation energy co
from the local intrasite terms. The idea of locality even p
vades the formulation of new approaches. The dyna
mean field method24 ~DMF! is a new approach which ha
been developed over recent years and has led to s
progress in our understanding of these correlated syste
The essential idea is to replace a lattice model by a single
impurity problem embedded in an effective medium det
mined self-consistently. In this way, only local quantu
fluctuations are included in the calculation.

Traditionally these two fields, electronic structure calc
lations based on LDA or GGA and PW basis for realis
materials, and sophisticated many body techniques applie
model Hamiltonians appear as two completely differe
even opposite, approaches to the electronic properties o
system. However, once the electronic structure calculati
are formulated in terms of local orbitals several connectio
4309 ©2000 The American Physical Society
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between the two approaches emerge naturally.
The purpose of this paper is to present ageneral approach

to describe and analyze electron correlation effects in lo
orbital electronic structure calculations. This new approa
also provides a connection between simple models~e.g., the
Hubbard model!, more sophisticated models~e.g., the gener-
alized Hubbard model!, and fully first-principles total energy
methods. Therefore, the discussion presented below is
useful for deriving the parameters appearing in the sim
models from first-principles calculations.25

The main two points discussed in this paper are as
lows.

~i! How the contributions due to the correlation ener
can be included in a local density~LD! first-principles total
energy method. In this approach, the correlation energ
obtained as an explicit function of the orbital occupanc
$ni% in contrast with standard density functional approac
such as the LDA or GGA.

~ii ! How to obtain the quasiparticle spectrum going b
yond the LD solution.

The generalized Hubbard Hamiltonian

Ĥ5ĤOE1ĤMB, ~1!

whereĤOE defines the one-electron contribution

ĤOE5 (
ia,s

Eia
s n̂ia,s1 (

iaÞ j b,s
t ia, j b
s ĉia,s

† ĉ j b,s ~2!

and ĤMB the many-body term

ĤMB5
1

2 (
i ,asÞbs8

Uin̂ia,sn̂ib,s8

1
1

2 (
iÞ j

as,bs8

Jia, j bn̂ia,sn̂ j b,s8 , ~3!

plays a central role in the discussion presented below
Eqs.~2! and ~3!, ĉ†, ĉ, andn̂ are the usual creation, annih
lation, and number operators, respectively. In this paper
will discuss in detail how the correlation energy and qua
particle spectrum for this Hamiltonian can be obtained. W
stress here that Hamiltonian~1! includes most of the many
body effects appearing in linear combination of atomic
bital ~LCAO! Hamiltonians. In Sec. II, we discuss our ge
eral local density formalism for generalized Hubba
Hamiltonians and analyze the Hartree, exchange, and e
atomic correlation potentials for each localized orbital.
Sec. II it is also shown how, by using a dynamical mean fi
~DMF! approximation, the generalized Hubbard Hamiltoni
can be mapped onto a ‘‘reduced’’ Hubbard Hamiltonian

Ĥr5(
ias

Ẽia
s n̂ias1 (

iaÞ j b,s
t ia, j b
s ĉias

† ĉ j bs

1
1

2 (
i ,asÞbs8

Ũ i n̂iasn̂ibs8 ,

where Ẽia
s is a renormalizedia level andŨ i an effective

intrasite Coulomb interaction. This reduced Hubbard Ham
tonian is then analyzed~Sec. III! by means of many-body
l-
h
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-
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techniques~Green functions, self-energies!, in two limits
Ũ/t→0 and Ũ/t→`. From this analysis, general expre
sions for the intra-atomic correlation energy and the s
energy are proposed, using an interpolation between
above two limits. As discussed in Sec. III, these results
be used to analyze the generalized Hubbard Hamiltonian
lowing two alternative procedures:~a! many-body and~b!
LD solutions. These cases are shown to be linked through
charge self-consistent conditions. The expression obtaine
this section for the intra-atomic correlation energy will b
used in Sec. V as one of the main contributions to
exchange-correlation energy in our first-principles LD tot
energy method for crystals and molecules.

The ideas introduced in Sec. III are applied to a multilev
Anderson model and to a Hubbard lattice in Sec. IV. T
results discussed in this section for highly correlated syste
show the accuracy and quality of the approximations int
duced in this paper.

In Sec. V, we discuss how to apply our previous analy
to the case of crystals or molecules. The case of crys
allows us to make contact with conventional DFT calcu
tions, while the case of small molecules shows how to
beyond the DMF approximation. In this section we sho
how the results obtained in Secs. II and III for the exchan
correlation energy corresponding to the generalized Hubb
Hamiltonian can be extended and applied to LD fir
principles total energy calculations. In particular, the resu
obtained by using this method show that the approach
sented in this paper for the description of correlation effe
offers an interesting alternative to the well-established d
sity functional methods based on the electron densityr(rW)
~LDA,GGA!.

Finally, we mention that, regarding the LD-LCAO ap
proach, this paper is a continuation of Ref. 26, where
basic ideas were first introduced. In this work, we consi
the possibility of having degenerate atomic orbitals a
present, for this more general case, the many-body orb
potentials necessary for performing a fully consistent lo
density-LCAO calculation. For the sake of completeness
discuss briefly, however, in Sec. II the main ideas alrea
presented in Ref. 26.

II. LOCAL DENSITY FORMALISM FOR GENERALIZED
HUBBARD HAMILTONIANS

In this paper, we take as our starting point Hamiltoni
~1!. Notice that in Eq.~3!, Ui represents the intratomic inter
action between orbitalsias and ibs8 located in the same
site i andJia, j b defines the interatomic Coulomb interactio
between orbitalsa and b in different sitesi and j. In this
paper we assume the intratomic Coulomb interactionUi to
be the same for all thei orbitals; this implies neglecting
effects associated with Hund’s rules as is commonly done
the generalized Hubbard Hamiltonian~ a more general analy
sis including Hund’s rules and following the discussion p
sented in this paper will be published elsewhere!. In Eq. ~2!,
E andt describe the different atomic levels and their hoppi
interactions. We also assume that any intratomic hopp
interaction is zero; this restriction will be removed in Sec.

Hamiltonian ~1! has been used as the basic approach
analyze many different correlation problems. The restric
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Hubbard Hamiltonian is obtained by takingJia, j b50 in
Hamiltonian ~3!: we shall discuss below how, upon give
conditions, this restricted Hamiltonian with renormalized p
rameters plays an important role for defining intratomic c
relation effects.

A. Local density equations

Following the LD approach introduced in Ref. 26, th
total energy of the system described by Hamiltonian~1! can
be shown to be afunctionof the orbital occupation number
nias5^n̂ias& where^& indicate the expectation value in th
ground state:

E5E@n1↑ ,n1↓ ,n2↑ ,n2↓ ,nias•••#5E@$nias%#. ~4!

In similarity with standard DF theory, the ground-sta
orbital occupation numbers are the setnias that minimizes
E@$nias%#; this minimization process is equivalent to th
self-consistent solution of an effective one-electron Ham
tonian Ĥeff, which depends itself on these occupation nu
bers. In what follows, we show howĤeff can be defined in
terms of the parameters of Hamiltonian~1! and the orbital
occupation numbers.

It is useful to split the total energy in Eq.~4! into the
one-electronT and many-bodyEMB contributions

E@$nias%#5T@$nias%#1EMB@$nias%#, ~5!

whereT is the mean value ofĤOE for the ground state ofĤeff

@Eq. ~6! below#; then, following Kohn and Sham, we ca
introduce the following effective Hamiltonian:

Ĥeff5 (
ia,s

~Eia
s 1Via,s

MB !n̂ia,s

1 (
s,(ia, j b)

t ia, j b
s ~ ĉia,s

† ĉ j b,s1 ĉ j b,s
† ĉia,s!, ~6!

where

Via,s
MB 5

]EMB@$nias%#

]nia,s
. ~7!

Solving Eqs.~6!, ~7! self-consistently we can calculate th
set $nias% for the ground state, and using Eq.~5! we obtain
the total energy of the system.

B. Hartree and exchange energies

Obviously, the main problem in this approach is to det
mine EMB in Eq. ~5!, as a function of the occupation num
bers. Again, it is convenient to split this term into the s
called Hartree, exchange, and correlation contributio
While it is straightforward to write down the functional de
pendence of the Hartree term, exchange and correlation
tributions are more involved. The following discussion d
scribes the procedure to calculateEX@$nias%# and
EC@$nias%#.

From Eq.~1!, we see that the Hartree contribution is giv
by
-
-

-
-

-

-
s.

n-
-

EH@$nias%#5
1

2 (
i ,asÞbs8

Uiniasnibs8

1
1

2 (
iÞ j

as,bs8

Jia, j bniasnj bs8 ~8!

while the exchange energy is

EX@$nias%#52
1

2 (
iÞ j

a,b,s

Jia, j bnias; j bsnj bs; ias ~9!

with nias; j bs5^ ĉias
† ĉ j bs&. Now, we follow the argument

given in Ref. 26, and make use of the sum rule

(
j bÞ ia

nias; j bsnj bs; ias5nias~12nias! ~10!

to write

EX@$nias%#52
1

2 (
ias

Jiasnias~12nias! ~11!

which yields the exchange energy as the interactionJias @see
Eq. ~15! below#, between the chargenias and its hole (1
2nias). The extranias hole needed for a total exchang
hole of 1 is associated with the self-interaction correct
that is automatically included in our formalism.

At this point it is convenient to comment that the e
change pair correlation functiongs( ia, j b) is defined26 by
the equation

nias; j bsnj bs; ias5niasgs~ ia, j b! ~12!

and

(
j bÞ ia

gs~ ia, j b!512nias . ~13!

In our discussion, we assume to have in the initial Ham
tonian~1!, t ia,ib50, and a symmetry around each lattice s
such that

nias; ibs50. ~14!

This basically means that the exchange hole around the
bital ia is extended beyond the local sitei. This allows us to
write the effective interactionJias @see Eq.~11!# as follows:

Jias5X~nias!Jia
NN , ~15!

whereJia
NN is the mean Coulomb interaction between an el

tron in the ias orbital and another electron in the neare
neighbor sites, andX(nias) a parameter, smaller than 1
measuring how the exchange hole associated with theias
orbital extends around thei site. In Ref. 26 we have show
that, for a three-dimensional crystal,X(nias) is practically
constant in the occupancy range 0.15,nias,0.85, with val-
ues between 0.7 and 0.8 for metals; in semiconductors,
have found, however, thatX(nias) is around 0.90–0.95 for
the same range of occupancies. In both cases,X(nias) tends
to zero asnias

1/3 (12nias)1/3 for nias→0 or 1, as correspond
to the conventional exchange energy in this limitEia

X

→2Knias
4/3 , in the three-dimensional case fornias→0.



te

te
n-
pe

n

-
te

o

th
th
th

n

gi

-

an
p

on
an
M
es
th

the

nt.
gy.
ap-
(1

ion

tal
MF

cts
en-

l-

d in

-
-
,
es,

on
ub-

4312 PRB 62P. POUet al.
It is also worth commenting that for a crystal with infini
coordination corresponding to the DMF limit,24 the exchange
hole becomes localized in the nearest-neighbor si
X(nias)51. In general, when the lattice coordination is i
creased over a given coordination number we can ex
X(nias) to increase towards 1.

Summarizing this discussion, the exchange energy ca
written in the following way:

EX@$nias%#52
1

2 (
ias

X~nias!Jia
NNnias~12nias!, ~16!

where for most practical cases,X(nias) can be taken con
stant. Then, we can introduce the following exchange po
tial Vias

X :

Vias
X 5

]EX@$nias%#

]nias
52X~nias!Jia

NNS 1

2
2niasD . ~17!

One should keep in mind that fornias close to 0 or 1,
X(nias) cannot be assumed to be constant and Eq.~17!
should be modified accordingly including the contribution
the derivative ofX(nias) with respect tonias .

C. Correlation energy

In a first step, we discuss extra-atomic contributions to
correlation energy. These contributions arise due to
extra-atomic screening of the exchange interaction and
Coulomb-hole energy.7,8 As discussed in Ref. 26, we ca
embody all these effects in a factorg(nias) such that the
sum of the exchange and extra-atomic correlation ener
ẼXC, is given by

ẼXC@$nias%#52
1

2 (
ias

g~nias!X~nias!Jia
NNnias~12nias!.

~18!

We have also found in Ref. 26 that for 0.15,nias

,0.85, the productg(nias)X(nias) is very well approxi-
mated by 1. This suggests replacingg(nias) by a constant
g ias defined by the conditiong iasX(nias)51 for the occu-
pancy range 0.15,nias,0.85 and write for the whole inter
val 0,nias,1

ẼXC@$nias%#52
1

2 (
ias

g iasX~nias!Jia
NNnias~12nias!.

~19!

This equation defines, in our formalism, the exchange
extra-atomic correlation energy. Notice that in the DMF a
proximation X(nias)51 and alsog ias51. Then, ẼXC is
well approximated in this limit by

ẼXC@$nias%#52
1

2 (
ias

Jia
NNnias~12nias!; ~20!

this simply reflects that no extra-atomic correlation term c
tributes to the many-body energy in the DMF limit. This c
be easily understood as the result of having, in the D
approximation, all the exchange hole localized in the near
neighbor sites: extra-atomic screening can not reallocate
s,

ct

be

n-

f

e
e
e

es

d
-

-

F
t-
is

hole that has already approached theias orbital to its near-
est neighbor’s distance. We should also comment that
many-body potentialṼia,s

XC , associated withẼXC is given by

Ṽia,s
XC 5

]ẼXC@$nias%#

]nias
52g iasX~nias!Jia

NNS 1

2
2niasD ,

~21!

whereX(nias) has been assumed to be practically consta
Let us now consider the intra-atomic correlation ener

As discussed in Ref. 26, intra-atomic correlation effects
pear when part of the total exchange-correlation hole
2nias) in Eq. ~20!, is transferred to the same atomi of the
ias orbital. Assume that a fractionf ias(12nias) with 0
, f ias,1, is transferred to the atomi. Then, the intratomic
correlation energy associated with theias orbital should be
given by

EI ,ias
C 52

f ias

2
Uinias~12nias!. ~22!

At the same time, the extra-atomic exchange-correlat
energy should be reduced by a factor (12 f ias), due to the
smaller hole located outside the atom. Then, the to
exchange-correlation energy should be given, in the D
limit, by

EXC@$nias%#52
1

2 (
ias

~12 f ias!Jia
NNnias~12nias!

2
1

2 (
ias

f iasUinias~12nias!. ~23!

This equation shows that intra-atomic correlation effe
can be added to the extra-atomic exchange-correlation
ergy by considering an effective interaction (Ui2Jia

NN) in-
side the local sitei. This result suggests introducing the fo
lowing ‘‘reduced’’ Hubbard Hamiltonian:

Ĥr5(
ias

@Eia
s 1Ṽia,s

H 1Ṽia,s
XC #n̂ia,s1 (

iaÞ j b,s
t ia, j bĉia,s

† ĉ j b,s

1
1

2 (
i ,asÞbs8

Ũ i n̂iasn̂ibs8 , ~24!

already mentioned in the Introduction, whereṼia,s
H

5(bs8ÞasJi
NNnibs81( j Þ i

bs8Jia, j bnj b,s8 ; in Eq. ~24! the
exchange and extraatomic correlation effects are include
the local potentialṼia,s

XC , while Ũ i is the effective intra-
atomic Coulomb interaction (Ui2Ji

NN), assumingJia
NN to be

a independent. Notice that the total Hartree potentialVia,s
H ,

associated with Eq.~8! is given byṼia,s
H 1(bs8ÞasŨ inibs8

as it should be. For a Hubbard Hamiltonian such thatUi

5Ji
NN , Eq. ~24! already represents the effective LD

Hamiltonian Eq.~6!. Our first important result is to approxi
mate Hamiltonian~1! by Eq. ~24!, where the LD potentials
Ṽia,s

H and Ṽia,s
XC , should be treated, regarding total energi

such as the many-body termVia,s
MB in Eq. ~6!.

In the following section we concentrate our analysis
discussing the many-body properties of the restricted H



-
a
n
d

o
W
of
e
g
n
to
p
p
it

u
r

-

ie
s,

gy
l.
i-

sing
tal

e

elf-

t

s-
-

dy
of
g

ntri-
e

PRB 62 4313LOCAL-DENSITY APPROACH AND QUASIPARTICLE . . .
bard Hamiltonian given by Eq.~24!. We shall present solu
tions to this Hamiltonian using a LD approximation and
many-body approach. In the LD approximatio
1
2 ( i ,asÞbs8Ũ i n̂iasn̂ibs8 is replaced by a Hartree energy an
a correlation energyEI@$nias%,Ũ i ,t i j #, a function of the oc-
cupation numbers set$nias%, and the parametersŨ i and t i j .
In the second approach, we introduce alocal self-energy
S i i (v) and calculate correlation energies and density
states using conventional Green’s function methods.
should comment that in this last approach we neglect
diagonal self-energiesS i j (v), that one can expect to b
small. This is exact in the DMF limit, with a lattice havin
infinite coordination number; in this case it has been show27

thatS i j (v)→0 and only diagonal self-energies contribute
the electronic properties of the system. One should kee
mind that this is a fundamental approximation in our a
proach and that, accordingly, for low-dimensional cases w
low coordination our solution may fail~regarding this point,
see the discussion in Sec. V!. As our two methods, the LD
and the self-energy approaches, are obviously linked thro
the correlation energy, we discuss both solutions togethe
the next section.

III. ANALYSIS OF THE RESTRICTED HUBBARD
HAMILTONIAN

Our starting point in this section is the ‘‘reduced’’ Hub
bard Hamiltonian

Ĥr5(
ias

Ẽia
s n̂ias1 (

iaÞ j b,s
t ia, j bĉias

† ĉ j bs

1
1

2 (
iasÞbs8

Ũ i n̂iasn̂ibs8 , ~25!

where we defineẼia
s 5Eia

s 1Ṽias
H 1Ṽias

XC in Eq. ~25!. We
look for a solution of Hamiltonian~25! by using Green-
function techniques and introducing diagonal self-energ
Saa

is (v). This implies neglecting off-diagonal contribution
as corresponds to the DMF approximation.

A. Self-energy approach

Our first goal is to find an appropriate self-ener
S iaa

s (v) for describing many-body effects within this mode
This self-energyS iaa

s allows us to calculate different dens
ties of statesr j a,kb

s defining the following Green function
Gj a,kb

s :

Gj a,kb
s ~v!5@vd2Hs# j a,kb

21 , ~26!

hered is the identity matrix and

H j a,kb
s 5~Ẽj a

s,H1S iaa
s !dabd jk1t j a,kb

s ~27!

with Ẽj a
s,H5Ẽj a

s 1Ũ j (bs8Þasnj bs8 ; thenr j a,kb
s (v) is given

by

r j a,kb
s ~v!52

1

p
ImGj a,kb

s ~v!. ~28!
f
e
f-

in
-
h

gh
in

s

Total energies and other quantities can be calculated u
conventional Green-function methods. In particular, the to
energy associated with Hamiltonian~25! is given by

E52
1

2 (
i j abs

ImE
2`

EF
~vd ia, j b1Ẽj a

s d ia, j b1t ia, j b
s !

3Gj b,ia~v!
dv

2p
. ~29!

The calculation ofS iaa
s (v) is based on an interpolativ

approach,28–31 which follows the following.
~i! First, we look forS iaa

s (v) in the limit Ũ i@t. This is
the atomic limit that can be calculated exactly.

~ii ! In a second step, we calculate the second-order s
energyS iaa

s(2)(v) using as the expansion parameterŨ i /t.
~iii ! Third, we look for an interpolative self-energy tha

yields the correct limits forŨ i /t@1 ~atomic! and Ũ i /t!1
~second-order perturbative expansion!.

~iv! The effective levels and correlation functions nece
sary for the determination ofS iaa

s (v) are calculated impos
ing self-consistency conditions.

1. Atomic limit

Let us first consider the atomic limitŨ i /t@1. For this
case, it is sufficient to consider the atomic Hamiltonian

Ĥat5(
as

Ẽia
s n̂ias1

1

2
Ũ i (

asÞbs8
n̂iasn̂ibs8 . ~30!

In Appendix A, we show how to calculate the one-bo
Green’s functions of this Hamiltonian, using the equation
motion technique. This procedure yields the followin
atomic result

Giaa
(at)s~v!5

K )
bs8Þas

~12n̂ibs8!L
v2Ẽia

s 1 i01

1 (
bs8Þas

K n̂ibs8 )
(gs9Þ ibs8)Þas

~12n̂igs9!L
v2Ẽia

s 2Ũ i1 i01

1•••1

K )
bs8Þas

n̂ibs8L
v2Ẽia

s 2~2M21!Ũ i1 i01
, ~31!

where 2M is the degeneracy of theias levels. In this ex-
pression all possible charge states of the atom give a co
bution toGi ,aa

(at)s . Its evaluation requires the knowledge of th

many particle correlationŝ n̂iasn̂ibs8&, ^n̂iasn̂ibs8n̂igs9&,
etc. However, for sufficiently largeŨ i , fluctuations in the
atom charge with respect to the mean chargeNi , by more
than one electron become negligible, andGi ,aa

(at)s(v) is accu-
rately given by the three poles expression
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Gi ,aa
(at)s'

ANi21
a

v2Ẽia
s 2Ũ i~Ni21!1 i01

1
ANi

a

v2Ẽia
s 2Ũ iNi1 i01

1
ANi11

a

v2Ẽia
s 2Ũ i~Ni11!1 i01

, ~32!

whereNi5Int@Ni # andNi5(asnias . In order to obtain the
exact first three moments of Eq.~32!, the weight factors
ANi21

s , ANi

s , and ANi11
s , should satisfy the following sum

rules ~see Appendix B!:

ANi21
a 1ANi

a 1ANi11
a 51, ~33!

~Ni21!ANi21
a 1NiANi

a 1~Ni11!ANi11
a 5 (

bs8Þas
^n̂ibs8&,

~34!

~Ni21!2ANi21
a 1Ni

2ANi

a 1~Ni11!2ANi11
a

5 (
bs8Þas

^n̂ibs8&1 (
(bs8Þgs9)Þas

^n̂ibs8n̂igs9&.

~35!

Notice that Eqs.~32!–~35! defineGiaa
(at)s as a function of

the mean chargeŝn̂ibs8& and the two-body correlation func
tions ^n̂iasn̂ibs8&. From Giaa

(at)s , one can define an atomi
self-energy using the equation

S iaa
(at)s5v2Ẽia

sH2@G(at)s# iaa
21 , ~36!

whereẼia
sH is the Hartree level. Using Eqs.~32!–~36!, it can

be shown thatS iaa
(at)s can be written as the ratio of two poly

nomials inv of the form

S iaa
(at)s5

aia
s Ũ i

2~v2Ẽia
s !1bia

s Ũ i
3

~v2Ẽia
s 1 i01!21cia

s Ũ i~v2Ẽia
s 1 i01!1dia

s Ũ i
2

,

~37!

where

aia
s 5~Ni2nias!@12~Ni2nias!#

1 (
(bs8Þgs9)Þas

^n̂ibs8n̂igs9&, ~38!

cia
s 5Ni2nias23Ni , ~39!

dia
s 5 (

(bs8Þgs9)Þas
^n̂ibs8n̂igs9&

13Ni
3212~3Ni21!~Ni2nias!, ~40!
bia
s 5Ni

2~12Ni !2~Ni2nias!dia
s . ~41!

2. Second order perturbation self-energy

In the second step mentioned above, we calculate
second-order self-energyS i ,aa

s(2)(v). Conventional perturba-
tion theory yields

S iaa
s(2)5Ũ i

2 (
bs8Þas

E
2`

`

de1de2de3

3
r ias~e1!r ibs8~e2!r ibs8~e3!

v1e22e12e31 i01
@ f 1f 3~12 f 2!

1~12 f 1!~12 f 3! f 2#, ~42!

where f i5 f (e i) denotes the Fermi distribution function, an
r ibs8(v) are effective densities of states given by Eqs.~26!–
~28!, taking effective levelsEia

s,eff instead ofEia
s,H1S iaa

s .
The effective levelsEia

s,eff in the isite are introduced to fulfill
charge consistency conditions in theias levels as explained
below, and are closely related to the LD solution introduc
in Sec. II. Before going into these important points, let
discuss how to get an interpolative self-energyS iaa

s (v) be-

tween the two limits (Ũ i /t→0 andŨ i /t→`) just presented.

3. Interpolative self-energy

This can be achieved noticing that

S iaa
s(2)~v!→Ũ i

2

(
bs8Þas

nibs8~12nibs8!

v2Eia
s,eff

~43!

when t/v→0. On the other hand, if we take formally th
limit Ũ i→0 in Eq. ~37!, we see that

S iaa
s(at)→

aia
s Ũ i

2

~v2Ẽia
s 1 i01!

. ~44!

In this small Ũ i limit, we can assume that̂n̂ibs8n̂igs9&
'nibs8nigs9 . Then, aia

s goes to(bs8Þasnibs8(12nibs8),
and

S iaa
s(at)→

Ũ i
2 (

bs8Þas

nibs8~12nibs8!

~v2Ẽia
s 1 i01!

. ~45!

Equations~43! and ~45! suggest to define the following in
terpolative self-energy, replacing (v2Eia

s,eff) by

Ũ i
2(bs8Þasnibs8(12nibs8)/S iaa

s(2)(v):
S iaa
s 5S S iaa

s(2)

hia
s D aia

s 1~aia
s DEia

s /Ũ i1bia
s /hia

s !~S iaa
s(2)/Ũ i !

11~2DEia
s /Ũ i1cia

s !~S iaa
s(2)/hia

s Ũ i !1~cia
s DEia

s /Ũ i1dia
s !~S iaa

s(2)/hia
s Ũ i !

2
, ~46!
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where

hia
s 5 (

bs8Þas

nibs8~12nibs8! ~47!

and

DEia
s 5Eia

s,eff2Ẽia
s . ~48!

Notice that Eq.~46! yields ~a! for Ũ i→0, S iaa
s →S iaa

s(2) ,

becauseDEia
s andS iaa

s(2)/Ũ i goes to zero asŨ i andhia
s goes

to aia
s . ~b! On the other hand, forŨ i /t→`, S iaa

s(2) can be

replaced byŨ i
2hia

s /(v2Eia
s,eff) and S iaa

s then goes to the
atomic limit.

4. Self-consistency conditions

The final step in order to determineS iaa
s (v) is to calcu-

late nibs , the correlation functionŝn̂iasn̂ibs8& and the ef-
fective levelsEia

s,eff self-consistently. The charges and t
correlation functions are determined through the relation

nias52
1

pE2`

`

f ~v!Im Giaa
s ~v!dv, ~49!

(
bs8Þas

^n̂iasn̂ibs8&5 (
bs8Þas

niasnibs8

2
1

pŨ i
E

2`

`

f ~v!Im@S iaa
s ~v!

3Giaa
s ~v!#dv ~50!

that follow from the general equations satisfied byS iaa
s and

Giaa
s . We should comment that( (bs8Þgs8)Þas^n̂ibs8n̂igs9&

in Eqs. ~38! and ~40! can be obtained from Eq.~50! in the
following way:

(
(bs8Þgs9)Þas

^n̂ibs8n̂igs9&5 (
gs9Þbs8

^n̂ibs8n̂igs9&

22 (
bs8Þas

^n̂ibs8n̂ias&.

~51!

It is important to stress that the self-consistent determ
tion of the two-body correlation functions^n̂ibs8n̂igs9&, is an
essential ingredient of our approach for calculatingS iaa

s . In
other words, the atomic self-energy given by Eq.~37! de-
pends not only on the self-consistent chargenias but on the
self-consistent correlation functions(gs9Þbs8^n̂ibs8n̂igs9&.
These self-consistent parameters introduce in the interp
tive self-energyS iaa

s (v), enough flexibility to yield an ap-
propriate interpolation between the atomic and second o
perturbation self-energies.

Finally, the effective levelsEia
s,eff are chosen to fulfill the

charge consistency between the value given by Eq.~49! and
the ones defined by the effective one-electron Hamiltonia

H j a,kb
eff 5Ej a

s,effd j a,kb1t j a,kb . ~52!
-

la-

er

:

This condition guarantees thatS iaa
s(2) tends to the right limit

whenv→`:

S iaa
s(2)→Ũ i

2

(
bs8Þas

nibs8~12nibs8!

v2Eia
s,eff

. ~53!

In this one-electron Hamiltonian,Ej a
s,eff plays the role of

an effective level that substitutes for@Ẽia
s,H1S iaa

s (v)# in
Hamiltonian~27!. When we compare Hamiltonian~52! with
Hamiltonian~25!, we realize thatEia

s,eff plays the role of the
following local-density level:

Ẽia
s,H1

]EI@$nias%#

]nias
, ~54!

whereEI is the correlation energy associated with the ma
body term 1/2( ibs8ÞasŨ i n̂iasn̂ibs8 .

Notice thatEia
s,eff should be determined to give the sam

local chargenias as the exact problem and this shows tha

Eia
s,eff5Ẽia

s,H1
]EI@$nias%#

]nias
. ~55!

In other words, the effective Hamiltonian~52! we have to
use to calculate the effective density of statesr ias(v) is
nothing else that the LD approximation associated with
Hubbard Hamiltonian~25!. It should be noted that, in orde
to calculateEia

s,eff using Eq.~55!, one needsEI@$nias%# , a
task that we address in the next section.

An alternative approach is to calculateEia
s,eff directly im-

posing charge consistent conditions as mentioned ab
This consistency can also be written using Friedel-sum ru
and Ward identities.32 In particular, as shown in Ref. 30, on
can replace charge consistent conditions by the follow
equation:

E
2`

`

f ~v!ImFGiaa
s ~v!

]S iaa
s

]v Gdv50 ~56!

which at zero temperature reduces to the Lutting
theorem,33 ensuring fulfillment of the Friedel sum rule.

Summarizing this discussion: the effective levelEia
s,eff is

introduced to calculate the effective density of sta
r ias(v), the quantity definingS ias

s(2) ; that level can be de-
termined using two complementary approaches:~i! in the
first one,Eia

s,eff is given by the LD level of Eq.~55!. In this
approach we need to know the functionalEI@$nias%#. ~ii ! In
the second approach,Eia

s,eff is calculated using Eq.~56!. This
second solution can always be applied to any general c
and does not depend on the previous knowledge of the
relation energy associated with the local Hubbard te
1/2Ũ i( i ,asÞbs8niasnibs8 .

We should comment that, wereEI@$nias%# known, one
could obtainEia

s,eff more efficiently without having to use
self-consistent loop in the calculation. This justifies our
terest in obtainingEI@$nias%#, as done in the next section.

It is interesting to mention that, as shown by Georg
et al. ~see Ref. 24!, one can obtain a better description of th
density of states of our system by changing slightly the p



in
y o
ay
c

of

e

an

n
g

lu

on

in

s
re

ee

ne:
ody
to

w

nic
ean

see
ur
e-
o be

ities
-

s
in

d

4316 PRB 62P. POUet al.
scription to calculater iab(v) in S iaa
s(2) . This approach offers

a very convenient way of calculating Mott transitions
Hubbard Hamiltonians. The idea is to define a new densit
statesr̃ iab(v) that incorporates in a more appropriate w
the effect of the environment. This is achieved by introdu
ing in the effective Hamiltonian defining the local density
statesr̃ iab(v) the local self-energyS j bb

s in all the j sites,

save the same site iwhere we are calculatingr̃ iab(v). We
should mention that this procedure introduces a new s
consistent loop in the calculation, sincer̃ iab depends on
S j bb

s , a quantity that depends onS j bb
(2)s , itself a function of

r̃ iab .

B. Correlation energy: EI
†ni as‡

EI@$nias%# has been calculated by analyzing Hamiltoni
~25! in two limits: ~i! first, we consider the caseŨ i /t→`,
the atomic limit, with thei site practically decoupled from
the crystal;~ii ! in a second step we analyze the caseŨ i /t
→0. In this limit, we calculateEI@$nias%#, using second
order perturbation theory.

Having studied these two cases,Ũ i /t→0 and`, we in-
troduce an ansatz forEI@$nias%# that interpolates betwee
those two limits. This procedure follows the same strate
we have used to calculateS iaa

s (v) and we can expect it to
yield also a reasonable approximation forEI@$nias%#. We
have checked that this is the case by analyzing simple c
ters, where we can calculateEI@$nias%# exactly.

1. Ũi Õt\`: Atomic limit

We analyze this limit using the atomic Green functi
@Eq. ~32!# and the following equation:

Ee2e5 2(
as

lmE
2`

EF
~v2Eia

s !Gi ,aa
s ~v!

dv

2p
~57!

that yields the electron-electron Coulomb energy for an
teracting electron gas. In theŨ i /t→` limit, this energy co-
incides with the correlation energy we are interested in.

In Eq. ~32!, we calculateANi21
a , ANi

a , and ANi11
a using

Eqs. ~33!–~35!, ~49!, and ~50!; in Eq. ~50! we can now use
for S i ,aa

s (v) the atomic limit given by Eq.~37!. This proce-
dure yields the following results:

ANi21
a 5

Ni

Ni
nias@12~Ni2Ni !#, ~58!

ANi

a 5~12nias!1~Ni2Ni !F12
2nias

Ni
~11Ni !G , ~59!

ANi11
a 5~Ni2Ni !2nias~Ni2Ni !

11Ni

Ni
~60!

valid only for Ũ i /t→`. Then, we introduce these quantitie
in the atomic Green function and obtain the following cor
lation energy from Eq.~57!:
f

-

lf-

y

s-

-

-

Eatomic
I @$nias%#52

1

2
Ũ i(

as
nias~12nias!

1
1

2
Ũ i~Ni2Ni !~11Ni2Ni !. ~61!

It is interesting to realize that the potentialVias
I associ-

ated with this correlation energy is the following~remember
that Ni5(asnias):

Vias,atomic
I 5

]EI

]nias
5Ũ i~nias2Ni !1Ũ iNi . ~62!

This equation shows that the sum of the Hartr
(bs8ÞasŨ inibs8 and the correlation potentials yields:

Vias,atomic
MB 5Ũ iNi , ~63!

a not unexpected result, as this many-body level,Ũ iNi , de-
pends only on the integer numberNi . In other words, in the
atomic limit electrons are transferred to the atom one by o
each time one electron enters the atom, the new many-b
level controlling how another electron can be transferred
the atom jumps byŨ i due to the Coulomb repulsion the ne
electron has with any other atomic electron.

For the particular case that the atomic levelEi1Ũ iNi , is
resonating with a continuum density of states, electro
charge can be transferred to the atom: however, this m
charge transfer~less than one electron! cannot modify the
atomic level as the electron jumping to the atom does not
itself. Figure 1 shows the different atomic levels of o
model Hamiltonian and their possible distribution with r
spect to a continuum density of states, that is assumed t
much narrower thatŨ i .

Figure 2~a! showsEI as a function ofni for the degener-
ate caseni5ni↑5ni↓5•••nias and four different levels; no-
tice the discontinuity appearing in the derivative ofEI@nias#
for ni51/4, 2/4, 3/4, and 1 or, equivalently, forNi51, 2, 3,
and 4. Figure 2~b! showsVias

MB as a function ofNi for the
same case; notice that this potential presents discontinu
of valueŨ i for Ni51,2,3: this is in agreement with the gen
eral result of Perdewet al.34 for an atom. Cases for atom
having more than four levels are similar to the ones shown
Fig. 2.

FIG. 1. Shows the atomic levelsEi1Ũ iNi , associated with the
atomic Hamiltonian~31!. A continuum density of states is assume

to be much narrower thanŨ i .
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2. Ũi Õt\0. Perturbative calculation of EI[{nias}]

This limit can be analyzed using conventional perturb
tion theory. Figure 3 shows the different second order d
grams contributing, in the lowest order, to the correlat
energy~first order diagrams contribute only to the Hartr
energy!. In the diagrams, electrons in theias and ibs8
states interact with each other creating virtual excitations
contribute to the correlation energy as follows:35

EI (2)@$nias%#

52(
i

H Ũ i
2

2 (
bs8Þas

E
2`

EF
dvdv8E

EF

`

dv9dv-

3
r̃ ias~v!r̃ ibs8~v8!r̃ ias~v9!r̃ ibs8~v-!

v91v-2~v1v8!
J .

~64!

FIG. 2. ~a! Correlation energy (2EI) as a function ofni , in the
atomic limit for 2M54. ~b! The sum of the Hartree and the corr
lation energy is shown for the same case as a function ofN.

FIG. 3. Second order perturbative diagram contributing toEI .
-
-

at

In Eq. ~64!, the sum extends upon all the possible values
as andbs8, and the factor 1/2 is included to avoid doub
counting. Notice that@(v91v-)2(v1v8)# represents the
energy of the virtual excitation associated with two electro
occupying theas andbs8 states, and having initial energie
v and v8 and final levelsv9 and v-, respectively. This
suggests to introduce the mean excitation energyWab asso-
ciated with these virtual excitations and write for the seco
order perturbation energy

EI (2)@$nias%#

52(
i

H Ũ i
2

2 (
bs8Þas

nias~12nias!nibs8~12nibs8!

Wab
J ,

~65!

where we already find the functional dependence ofEI (2) on
nias . We should comment, however, thatWab itself also
depends onnias , introducing a complication in our discus
sion that we analyze below. For the time being, we sh
assumeWab to be known and discuss the interpolative e
pression we propose for calculating the correlation energyEI

for any value ofŨ/t.

3. Interpolative correlation energy

The correlation energy we are interested in,EI , has to
yield Eq. ~61! for Ũ/t→` and Eq.~65! for Ũ/t→0. This
suggests, ifNi5Ni and hence the second term of Eq.~61! is
zero, to use the following correlation energy:

EI@$nias%#52(
i

H 1

2
Ũ i(

as
nias~12nias!F~x!J ,

~66!

wherex5(bs8Þas(Ũ i /Wab)nibs8(12nibs8), andF(x) be-
haves in the following way:

F~x!5H x, x→0,

1, x→`.
~67!

These two limits yield the appropriate values ofEI for
Ũ/t→` and Ũ/t→0.

We have found that a good approximation toF(x) is

F~x!5a
x

11x
1~12a!~12e2x!, ~68!

wherea is a parameter fitted to the results discussed be
for a cluster. The general correlation energy, forNiÞNi , is
written as a generalization of Eq.~66! in the following way:

EI@$nias%#52(
i

H 1

2
Ũ i(

as
nias~12nias!F~x!1

1

2
Ũ i

3~Ni2Ni !~11Ni2Ni !gS Ũ i

W
,nias ;Ni D J ,

~69!

whereg should fulfill conditions
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g→H 0 faster than
Ũ i

W
for Ũ i→0,

1 for Ũ i→`

~70!

in order to get the appropriate limits forEI .

4. Simple models: Characterization of the parameters
defining EI [{n i as}]

We have determineda in Eq. ~68! and the functiong in
Eq. ~69!, by analyzing the case shown in Fig. 4. Here,
single atomi with M levelsa (2M including spin! interacts
with M independent levelsm (2M including spin!. Each pair
of levels can accommodate two electrons, with spins up
down, and all the electrons inside the atom interact wit
Coulomb interactionŨ i . The Hamiltonian describing this
system is the following:

Ĥ5(
as

Eia
s n̂ias1T (

ams
~ ĉias

† ĉms1 ĉms
† ĉias!1(

ms
Emn̂ms

1
1

2 (
asÞbs8

Ũ i n̂iasn̂ibs8 . ~71!

The correlation energyEI@$nias%#, of this Hamiltonian
can be obtained by solving, first Hamiltonian~71! exactly
and, then, following the prescription given in Ref. 26, calc
lating the Hartree and the kinetic energy. Our results
EI@$nias%# are presented in Fig. 5, taking :ni5ni↑5ni↓
5•••nias ~all the occupancies of the different levels a
equal!, for different values ofM (M51,2,3 and 4!, and
Ũ i /T. For this particular case we have found thatEI@$nias%#
can be well approximated by the following equation

EI@$nias%#52
b

2
Ũ i(

as
nias~12nias!F~x!

1
1

2
Ũ i~Ni2Ni !~11Ni2Ni !F~y!, ~72!

where

y5cS Ũ i

T
D 2

nias~12nias!~Ni2Ni !
1/2~11Ni2Ni !

1/2,

x5
Ũ i

T (
bs8Þas

nibs8~12nibs8!

1/nias
1/2 ~12nias!1/211/nibs8

1/2
~12nibs8!

1/2
,

FIG. 4. Atomic model of 23(3) levels ~including spin! inter-
acting with three ‘‘reservoirs’’ simulated by three sharp levels.
d
a

-
r

and a, b, and c are parameters that have been fitted to
cluster solution. Table I gives the parameters used for th
shown in Fig. 5.

In Eq. ~72! we have used forx a dependence onnibs8(1
2nibs8), apparently different from the one given above, a
ter Eq.~66!. One should realize, however, that in the atom
model we are considering~see Fig. 4!, Wab andT are related
by the simple equation

Wab5
T

nias
1/2 ~12nias!1/2

1
T

nibs8
1/2

~12nibs8!
1/2

. ~73!

Replacing Eq.~73! into Eq. ~66! yields the dependence ofx
we have introduced in Eq.~72!.

In Eq. ~72! we have also introduced the factorb to im-
prove the fit to the results of the cluster model. On the ot
hand, the second term of the right hand side of Eq.~72!

shows the appropriate limits forŨ/T→` and Ũ/T→0. For

Ũ/T→`, we recover the atomic limit, Eq.~61!, while for

Ũ/T→0, this term contributes such asŨ2/T3, going to zero

more rapidly thanŨ2/T ~the order of magnitude of the sec
ond order perturbation contribution!.

Equation~72! and the parameters given in Table I defi
the correlation energyEI@$nias%#, for the particular case in
which all the 2M levels have the same occupancy. In Fig.
we compare the exact values ofEI with our approximation,
showing the quality of our fit. A more general correlatio
energy is needed, however, for cases in which the occupa
numbers are different, as obtained by changing the rela
energy of the atomic levels and their hoppingsTia .

This case can be obtained by generalizing the coefficie
a andb, as well as the termc@nias(12nias)/T2#, for values
of niasÞnibs andTiaÞTib . In Appendix C we discuss the
details of our interpolative procedure; regarding our pres
purposes, let us only mention that, in this generalization,
replace the previous parameters by values^a&, ^b&, and
^c@nias(12nias)/Tia

2 #&, that interpolates between the cas
presented in Fig. 5, with the new parameters written a
function of nias andTia . Thus we find

EI@$nias%#52
^b&
2

Ũ i(
as

nias~12nias!F~^xias&!

1
1

2
Ũ i~Ni2Ni !~11Ni2Ni !F~^y&!.

~74!

F(x) being given by $^a&x/(11x)1(12^a&)(1
2exp@2x#)%, and

^y&5Ũ i
2K c

nias~12nias!

Tia
2 L ~Ni2Ni !

1/2~11Ni2Ni !
1/2,
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^xias&5Ũ i (
bs8(Þas)

nibs8~12nibs8!

Tia /nias
1/2 ~12nias!1/21Tib /nibs8

1/2
~12nibs8!

1/2
.

We should stress that this equation applies to the simple model of Fig. 4. We can write Eq.~74! in a more convenient way
by replacingTia by Wia , using Eq.~73!, which is still true in the caseTiaÞTib . This yields the following correlation energy

EI@$nias%#52
^b&
2

Ũ i(
as

nias~12nias!F~^xias&̃ !1
1

2
Ũ i~Ni2Ni !~11Ni2Ni !F~^ ỹ&!, ~75!

where

FIG. 5. EI /Ũ as a function ofni , for differentŨ/T values, as calculated exactly~full line! and using Eq.~72! ~dashed line!. ~a! The first
set of four figures correspond to the case 2M52; ~b! the next four figures correspond to 2M54; ~c! 2M56; ~d! 2M58.
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FIG. 5. ~Continued!.
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^xias&̃5 (
bs8(Þas)

Ũ i

Wab
nibs8~12nibs8!,

^ ỹ&5Ũ i
2K 4c

Wa
2 L ~Ni2Ni !

1/2~11Ni2Ni !
1/2.

In these equationsWab5Wa1Wb , Wa representing the
mean excitation energy between the empty and the occu
DOS associated with the orbitala.
ed

IV. RESULTS FOR THE MULTILEVEL ANDERSON
IMPURITY AND THE MULTIBAND HUBBARD LATTICE

In this section we analyze the properties of the multile
Anderson model using the formalism discussed above. T
model has been extensively used to represent a mag
impurity in a metallic host32 and more recently to simulat
artificial atoms or quantum dots.30,33,36–39

As a first case we reconsider the model of Fig. 4, wh
an atom or quantum dot having a degeneracy 2M , is con-
nected to a reservoir. This model, with the reservoir sim
lated by sharp levels, can give us a rough idea of how
charge transfer between the quantum dot and the rese
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proceeds. On the other hand, as the model of Fig. 4 ca
calculated exactly, we shall use the comparison between
exact and the approximate solution for analyzing the valid
of our approximations and, in particular, of the correlati
energy given by Eq.~74!.

In a second step we consider a more realistic quantum
model where the electron reservoirs have a continuous
sity of states. Finally, we apply our approach to a multiba
Hubbard lattice.

A. Multilevel Anderson model

1. Zero band-width limit 2MÄ4

In this calculation, we present results for a nondegene
case with 2M54 («1Þ«2). The reservoirs are simulated b
sharp levels~Fig. 4!.

Figure 6~a! showsn1 andn2 as a function of the ‘‘Fermi
energy’’ ~in this model, this is the energy of the sharp leve
simulating the reservoirs!, for Ũ/T54, 8, 10, and 16, and
«12«25T. Exact results are given in full lines, the results
our approach are given in short-dashed lines, and the
results are given in long-dashed lines. Comparison betw
exact and approximate results shows that our method yi
reasonable values ofn1 andn2 up to Ũ/T'10. For smaller
values, sayŨ/T'4, our approximation is excellent, repre
senting a substantial improvement upon the HF solution.
should comment that forŨ/T'16, our solution is also very
good except in a small region of energy for whichn11n2
.1; even in this case, our solution is reasonable.

TABLE I. Parametersa, b, andc in Eq. ~72! used to fitEI for
2M52, 4, 6, and 8.

2M52

U/T a b c
2 0.5 1.09 0.047
4 0.5 1.14 0.041
8 0.5 1.16 0.032
16 0.5 1.10 0.019
32 0.5 1.02 0.010

2M54
2 0.83 0.89 0.013
4 0.83 0.85 0.015
8 0.83 0.84 0.018
16 0.83 0.87 0.018
32 0.83 0.92 0.012

2M56
2 1.0 0.84 0.0080
4 1.0 0.82 0.0080
8 1.0 0.81 0.0082
16 1.0 0.85 0.0101
32 1.0 0.90 0.0089

2M58
2 1.15 0.87 0.0012
4 1.15 0.85 0.0016
8 1.15 0.83 0.0043
16 1.15 0.85 0.0062
32 1.15 0.89 0.0063
be
he
y

ot
n-
d

te
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en
ds

e

Figure 6~b! shows similar results for«12«252T. The
exact solution of this case is even better reproduced by
solution than the previous one, withn1 and n2 very well
approximated even forŨ/T516. We conclude that the cas
«12«25T corresponds to the most unfavorable case~for
«15«2, our results reproduce very well the exact solutio!,
and shows that we can use with great confidence the app
mations presented in the previous section up to values
Ũ/T'10.

2. Quantum dots (2MÄ4)

As a more realistic model for a multilevel quantum dot
an Anderson impurity, we consider the generalized Ander
model given by H5H01H res1HT , where H0

5(memd̂m
† d̂m1U( l .mn̂mn̂l corresponds to the uncouple

QD (n̂m5d̂m
† d̂m); H res5(kekĉk

†ĉk to the uncoupled reser

voir, and HT5(m,ktm,kd̂m
† ĉk1H.c. describes the coupling

between the dot and the reservoirs. The labelsm and l (0
<m,l<2M ) in H denote the different dot levels includin
spin quantum numbers. We adopt the usual simplifying
sumption of having the same electron-electron interactionU
between any pair of dot states.

When applying the formalism of Sec. III for the prese
model we assume that the tunneling rate, given byiDm

5(ktm,k
2 /(v2ek1 i01), is independent of the energy. Wit

this assumption the effective densities of statesr i become
simple Lorentzian functions.

As in the case of sharp levels we have studied the 2M
54 case for different values ofU/Dm . Figures 7~a! and 7~b!
show the charge per dot level as a function of the leads Fe
energy, forU/Dm513.3 and 8, as calculated using either o
LD potential or the self-energy approach. We also show,
comparison, the Hartree-Fock solution. For the LD calcu
tion, we need to calculate the mean excitation energyWa
associated with each orbital, in order to use Eq.~75!. We
have found, using Eqs.~64! and ~65!, that for 0.1<nia
<0.9, it is a good approximation to write

Wa52.52DmF1.251tan2pS nias2
1

2D G1/2

. ~76!

The comparison of the different solutions presented
Figs. 7~a! and 7~b! shows that our LD calculation and ou
self-energy solution yield very similar charges mainly in t
region U/Dm<10, where we can take our solutions wi
great confidence~in this case,D plays approximately the role
of T in the zero bandwidth limit!. In Fig. 7, we can also see
that our correlated solutions present a substantial impro
ment over the HF one.

It is interesting to comment how our self-energy soluti
can be used to calculate the quasiparticle spectral dens
This property depends strongly on the charge within the d
Figure 8 illustrates the evolution of the interacting densit
of states when increasing the charge inside the dot for
fully degenerate case (e15e2). One can observe that forn
!1.0 the DOS consists of a broad quasi-Lorentzian re
nance centered slightly above the Fermi energy. This beh
ior corresponds to the so-called mixed valence regim41

Whenn>1 the system is in the Kondo regime and the DO
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FIG. 6. ~a! Occupanciesn1s andn2s , for the
atomic model of Fig. 4 with 2M54, as a func-

tion of the ‘‘reservoirs’’ levelE0 /Ũ, for E150,

E25T and differentŨ/T values.~a! The first set
of four figures~labeled a1–a4! corresponds to the

caseE150, E25T, andŨ/T54, 8, 10, and 16.
~b! Same as~a!, for E150 and E252T. Full
lines: exact solution. Short dashed lines: our s
lution using Eq.~72!. Long dashed lines: HF so
lution.
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exhibits a narrow resonance around the Fermi energy
two broader resonances at the charge excitation energie
ande1U. These two resonances are in general not symm
ric except for the half-filled casen;2, due to the hole-
electron symmetry.28

B. Multiband Hubbard lattice: 2 MÄ2 and 4

In this section we consider the case of a multiband H
bard lattice, with the following Hamiltonian:

Ĥ52T (
i , j (NN)

ĉias
† ĉ j as1

1

2 (
asÞbs8

Uin̂iasn̂ibs8 ~77!

and analyze two cases, with either a singly or doubly deg
erate level per site. In Eq.~77!, we also assume the atoms
nd

t-

-

n-

form a square lattice with each atom having four near
neighbors. The case of a simply degenerate level with
electron per site has been discussed elsewhere.24,43 Here, for
the sake of completeness we only show in Fig. 9 the evo
tion of its local DOS as a function ofU/T. This is a case tha
has been analyzed using the many-body techniques discu
above. For sake of simplicity we have replaced the squ
lattice by a Bethe lattice with coordination 4. As Fig.
shows, the DOS of this system evolves presenting a narro
band aroundEF for larger U/T values; eventually, a
Hubbard-Mott transition is found forU/T*13. It is worth
commenting that this metal-insulator transition has been
culated using the local-self-energy described in Sec.
complemented with the consistent description introduced
Georgeset al.24 for infinite dimension, within the DMF ap-
proximation.
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As a second example we analyze the case of a do
degenerate level per site, with a quarter filling~1 electron per
site!. This is a case that has received recently some atten
as a model of a magnetic material.40 For studying this case
including its band structure and the possible Hubbard-M
transition, we use the many-body techniques discus
above, neglecting off-diagonal self-energies.

FIG. 7. ~a! Occupancyni , as a function of the reservoirs leve
for the quantum dot model discussed in the text. (2U/D513.3).
Full line: self-energy solution. Short-dotted line: LD solutio
Long-dashed line: HF solution.~b! As ~a!, for 2U/D58.

FIG. 8. DOS as a function of the reservoir level for the sa
model analyzed in Fig. 7~b! (2U/D58).
ly

on

tt
ed

Figure 10 shows the evolution of the local DOS for i
creasing values ofU/T ~as in the previous case, we use
Bethe lattice replacing the actual one!. For this case, the
ground state is obtained by looking for a ferromagnetic
lution, with different occupancies for spins up or down.~One
should notice that for this particular model the ferromagne
solution is degenerate in energy with a nonmagnetic solu
having charge transfer between the two levels in each s
Differences between these solutions can only be obtained
more complete Mott-Hubbard model in introduced includi
Hund rules.! In Fig. 10 we also show the occupancies of t
two different spin occupancies. ForU/T&13, the system ap-
pears to be paramagnetic with a band structure that gets
rower aroundEF for larger U/T values, while, at the sam
time, two main peaks appear above and belowEF . For U/T

e

FIG. 9. DOS for the two-dimensional Hubbard model discuss
in the text. Here, we consider a singly half occupied degene
level and differentU/T values. The Fermi level is taken as th
origin of energies.

FIG. 10. DOS for a Hubbard model, where we have a dou
quarter-filled degenerate level and differentU/T values. ForU/T
513, we show the DOS for both spins. ForU/T<12, the solution
is paramagnetic. The Fermi level is taken as the origin of energ
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close toU/T.13, the band DOS evolves into a Kondo lik
peak and, eventually, forU/T larger than 13 the system ap
pears to be semiconducting, and behaves as a ferromag
system. It is interesting to compare this solution with the o
found for the singly degenerate level: in both cases,
metal-insulator transition appears forU/T.13. This shows
that the solution of the doubly degenerate level can be
derstood in terms of the simply degenerate case: as soo
U/T is large enough for yielding an insulator in the 2M
52 case, the second level is repelled to higher energies
the system becomes ferromagnetic.~We should commen
that in our solution for 2M54, the two states with the oc
cupied spins become equivalent to the singly degenerate
of the model discussed above.!

These results can be checked by comparing with rec
calculations by Homoiet al.40 who analyzed the same stru
ture with different band-filling factors. In the half-filled cas
those authors have found the Mott-Hubbard transition
U/W53, whereW is the band-width of the initial DOS~in
our case,W54T), in agreement with our results.

V. DISCUSSION: HOW TO APPLY PREVIOUS RESULTS
TO CRYSTALS AND MOLECULES

In the previous sections we have shown how to introdu
within the local density dynamical mean field approximatio
the exchange-correlation potential associated with a gen
ized Hubbard Hamiltonian. Models based on this Ham
tonian are often used for analyzing the electronic proper
of highly correlated systems. Although they provide a go
qualitative description, new terms have to be included in
Hamiltonian in order to get a satisfactory quantitative d
scription of realistic systems such as molecules or solids
this section, we discuss these new many-body terms
show how this more complex Hamiltonian can be solv
using the ideas discussed above. In particular, we com
the results obtained by this method with standard approa
such as DFT-LDA or GGA calculations in solid state theo
and configuration interaction~CI! in quantum chemistry. The
discussion concerning small molecules is particularly r
evant, because it illustrates how to go beyond the dynam
mean field approximation.

A. Bulk solids

We write the general Hamiltonian for the crystal electro
as follows:

Ĥ5(
n,s

~en1Vnn,s
ps !n̂n,s1 (

mÞn,s
~ tmn,s1Vmn,s

ps !ĉms
† ĉns

1
1

2 (
nvsmls8

Ovl
nm ĉns

† ĉms8
† ĉls8ĉvs , ~78!

wheren[ i ,a and

en5E wn~ r̄ !S 2
¹2

2
2(

a

Za

u r̄ 2R̄au
D wn~ r̄ !dr̄,

tnm5E wn~ r̄ !S 2
¹2

2
2(

a

Za

u r̄ 2R̄au
D wm~ r̄ !dr̄, ~79!
etic
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Ovl
nm5E wn~ r̄ !wv~ r̄ !

1

u r̄ 2 r̄ 8u
wm~ r̄ 8!wl~ r̄ 8!dr̄dr̄8.

Vmn,s
ps are the matrix elements of the pseudopotential.22 The

sums inn,m, . . . , extend only to the valence orbitals in eac
site i.

The many-body terms of Hamiltonian~78! include differ-
ent types of contributions, among them the Coulomb int
actionsUn and Jnm appearing in the generalized Hubba
Hamiltonian discussed above, and hybrid interactions
hn̂ĉ†ĉ. In all these contributions only three different orbita
are involved at most. We can separate these terms and w
the many-body contribution as follows:

1

2 (
nvsmls8

Ovl
nm ĉns

† ĉms8
† ĉls8ĉvs5(

n
Unn̂n↑n̂n↓

1
1

2 (
mÞn,ss8

Jnmn̂nsn̂ms8

1 (
mÞn,l,ss8

hl,nmn̂ls8ĉns
† ĉms

2 (
mÞn,l,s

hl,nm
x n̂lsĉns

† ĉms1
1

2 (
N.N.

Ovl
nm~ ĉns

† ĉvs!

3~ ĉms8
† ĉls8!1other terms, ~80!

whereUn , Jnm , hl,nm , andhl,nm
x are defined by

hl,nm5E wl
2~ r̄ !

1

u r̄ 2 r̄ 8u
wn~ r̄ 8!wm~ r̄ 8!dr̄dr̄8, ~81!

hl,nm
x 5E wl~ r̄ !wn~ r̄ !

1

u r̄ 2 r̄ 8u
wl~ r̄ 8!wm~ r̄ 8!dr̄dr̄8,

~82!

Un5E wn
2~ r̄ !

1

u r̄ 2 r̄ 8u
wn

2~ r̄ 8!dr̄dr̄8, ~83!

Jnm5E wn
2~ r̄ !

1

u r̄ 2 r̄ 8u
wm

2 ~ r̄ 8!dr̄dr̄8. ~84!

Notice that among all the remaining contributionsOvl
nm we

have singled out those wheren,m,v, andl belong either to
one atom or to nearest-neighbor atoms~indicated by(NN).
These are the terms which have to be retained in order to
a good description of the energy of the system. The m
important contributions in(NN come from the dipole-dipole
interaction given by the terms wherenÞvP i ,mÞl
P j ,ss8, and from the exchange interaction
2 1

2 (mÞnJnm
x n̂nsn̂ms , where

Jnm
x 5E wn~ r̄ !wm~ r̄ !

1

u r̄ 2 r̄ 8u
wn~ r̄ 8!wm~ r̄ 8!dr̄dr̄8. ~85!

We have found that the rest of the terms@labeledother
termsin Eq. ~80!# give a very small contribution to the tota
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energy of the system and are going to be neglected. We
this approximation the LCAO-OO~orbital occupancy! ap-
proximation.

The resulting LCAO-OO Hamiltonian reads as follows

Ĥ05(
ns

~en1Vnn,s
ps !n̂ns1 (

nÞm,s
T̂nm,sĉns

† ĉms

1(
n

Unn̂n↑n̂n↓1
1

2 (
nÞm,s,s8

Jnmn̂nsn̂ms8

1
1

2 (
n.n.

Ovl
nm~ ĉns

† ĉvs!~ ĉms8
† ĉls8!, ~86!

where thehoppingterm T̂nm,s is defined by

T̂nm,s5F tnm1Vnm,s
ps 1 (

l,s8
hl,nmn̂ls82(

l
hl,nm

x n̂lsG .

~87!

We can now make contact with the generalized Hubb
Hamiltonians discussed in the previous sections introduc

the HamiltonianĤ̃0:

Ĥ̃05(
ns

~en1Vnn,s
ps !n̂ns1 (

nÞm,s
Tnm,sĉns

† ĉms

1(
n

Unn̂n↑n̂n↓1
1

2 (
nÞm,

Jnmn̂nn̂m , ~88!

whereTnm,s is given by Eq.~87!, replacingn̂ls by the oc-

cupation numbernls . This HamiltonianĤ̃0 is now com-
pletely analogous to the generalized Hubbard Hamiltoni
we have considered so far and can be treated using the
niques described in Secs. II and III. For the difference

tweenĤ0 and Ĥ̃0 , dĤ̃0, we propose to use a Hartree-Fo
approximation. Thus, the total energyE0 of Hamiltonian
~86! is calculated as the sum ofẼ0, the ground-state energ

of Eq. ~88!, and the Hartree-Fock~HF! mean value ofdĤ̃0:

^dĤ̃0&HF52 (
nÞm,s

F(
l

~hl,nm2hl,nm
x !nnlsnmlsG

1
1

2 (
NN,s

Ovl
nm~nmlsnnvs2nnlsnmvs!. ~89!

Regarding the solution of Hamiltonian~88!, it has to be
noticed that the intra-atomic Coulomb interaction within
site i, sayUn[Uia andJnm[Jia,ib , are different from each
other, at variance with the generalized Hubbard Hamilton
~1! that we have considered so far, where it was assum
Uia5Jia,ib5Ui . In problems where an atomic minimal ba
sis is used, one finds that the differences between thos
traatomic interactions are small. In these cases, it is w
justified to calculate the intraatomic correlation energyEI

with Eq. ~75!, using for each orbitalia a different Coulomb
interactionŨ ia defined by (Uia2Jia

NN).
We have checked the accuracy of this approach consi

ing the case of bulk Si. We have used a LCAO-OO Ham
tonian with an optimizedsp3 minimal basis. Details of the
all
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implementation of the method and the use of a exten
basis~includingd orbitals! will be published elsewhere. Her
we focus on the comparison of our method with anoth
localized orbital scheme such asFIREBALL96,17 where a mini-
mal sp3 basis is also used, and standard LDA and GG
plane wave implementations. TheFIREBALL96 calculation
uses contracted atomic orbitals generated with a cutoff ra
Rc55 a.u.13

Figures 11 and 12 show the results obtained with the
ferent methods for the total energy per atom~cohesive en-
ergy! and the exchange-correlation~XC! energy per atom as
a function of the lattice parameter. In all the cases we
taking as a reference for the total energy or the exchan
correlation energy the value calculated for the isolated a
with the corresponding method. Notice that in the case
FIREBALL and the DFT-PW calculations we have to include
correction for the spin-polarization energy in the calculati
of the total energy for the isolated atom. We have take
value of20.65 eV, according to Ref. 42. In order to mak
the comparison between our method and the other
proaches meaningful we have to include in the LCAO-O
Hartree energy the electrostatic self-interaction energy a
ciated with each orbital occupancy, a term that is autom
cally not included in our approach. Table II compares t
total energy and XC energy calculated with different me
ods for the experimental lattice constant 5.43 Å. The w
known overestimation of the cohesive energy by all t

FIG. 11. Cohesive energy of Si as a function of the lattice
rameter for~a! full line, our LCAO-OO model;~b! long-dashed
line, FIREBALL; ~c! short-dashed line, LDA; and~d! dotted-dashed
line, GGA.

FIG. 12. As in Fig. 11 for the exchange-correlation energy.
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methods based in LDA is clearly shown. GGA considera
improves the result of LDA calculations. The LCAO-O
method is the only one providing an upper bound to
cohesive energy. This is related to the better description
the XC energy~see below! and to the fact that both ou
LCAO-OO and theFIREBALL96 calculations use a minima
basis: more complete basis will be needed in order to g
converged value of the Hartree and kinetic energy contri
tions.

A fairer estimation of the relative merit of the differen
methods in the description of the exchange and correla
would therefore be provided by a direct comparison of
XC energy. We assume that the Hartree and kinetic ener
are well converged in the DFT calculations~both LDA and
GGA! with a plane wave basis. Using these values and
experimental Si cohesive energy we can determine that
value of the XC energy, at the experimental lattice para
eter, should be 5.10 eV. Our LCAO-OO approach is with
an error of only 0.1 eV when compared with that valu
while all the LDA based methods significantly overestima
the XC energy. The GGA approximation improves over t
LDA results, providing a value close to our LCAO-O
method. Notice that the overestimation of the XC energy
FIREBALL96, larger than the LDA-PW case, is mainly due
a further approximation used for the fast evaluation of
exchange-correlation matrix elements~see Sec. IV D in Ref.
13!. When this approximation is improved~using the method
proposed in Ref. 21! the XC energy comes closer to th
LDA-PW result.

We conclude from this analysis that our LCAO-OO a
proach, using the formalism discussed above, seems to
vide a very good description, comparable to the GGA
proximation, of the exchange-correlation energies in
limit of low correlation, as shown in the case of bulk Si. O
method combines a significant improvement over the LD
approach for this low correlation limit with the ability t
describe the high correlation limit tested in Sec. IV.

B. Small molecules

The second example we address in this section is the
of molecules. Our basic approach to this system is simila
the one discussed above for crystals. We take as the sta
point the same LCAO-OO HamiltonianĤ0 @Eq. ~86!#, which
we also reduce to the generalized Hubbard Hamiltonian@Eq.
~88!#. As in the case of crystals, we approximate the grou
state energy of Eq.~86! Eo by the one associated wit

Hamiltonian@Eq. ~88!#, Ẽo , plus the contribution̂dĤ̃0&HF,
in similarity with Eq. ~89!.

The analysis of Hamiltonian~88! for molecules has to be
changed, however, with respect to our previous discus
for the following reasons. First of all, we have to realize th

TABLE II. Cohesive energy (Etot) and exchange-correlation en
ergy (EXC), both in eV, for bulk Si calculated with different meth
ods for the experimental lattice constant.

LCAO-OO FB LDA GGA Exp.

Etot 3.95 5.00 5.10 4.65 4.60
EXC 5.23 6.15 5.60 5.10
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the conditionnias; ibs50 is not satisfied due to the reduce
symmetry in the molecule. Recalling the results in Sec. II
this implies that the exchange hole (12nias) is not com-
pletely located beyond the local sitei. A fraction of this hole
is also located inside the atomi, increasing the effective
interaction,Jias , betweennias and its hole (12nias), due
to the larger intra-atomic coulomb interaction.

We analyze this case introducing a factorx(nias) that
takes into account the hole fraction located inside the sitei, a
value that can be calculated from the density matrixni j s(v)
@see Eq.~12!#. Thus, we write the exchange and extra-atom
correlation energy as follows:

ẼXC@$nias%#52
1

2 (
ias

Jianias~12nias!, ~90!

where

Jia5~12xia!Jia
NN1xiaUi , ~91!

andUi is the mean Coulomb interaction in the sitei. In our
approach, Eq.~90! replaces Eq.~20! for xia different from
zero ~in other words, fornias; ibsÞ0). Notice that for the
sake of clarity we have assumedxia and thusJia to be spin
independent, but the formalism can be extended in a strai
forward manner to the case of spin polarization.

On the other hand, we have to change also our treatm
of the intraatomic correlation energyEI@$nias%# for Hamil-
tonian ~88!. It is convenient to discuss this point by consi
ering first the DMF approximation discussed above from
different perspective. To this end, consider the first and s
ond order Feynman diagrams~shown in Fig. 13! contributing
to the energy of the system. In the DMF approach the fi
order exchange diagram (a3 in Fig. 13! yields Eq.~20!, since
the exchange hole is located in the nearest-neighbor s
~remember that we assumednias; ibs50). Now, we consider
the second order diagrams. In our approach so far we did
introducing the reduced Hamiltonian~25!. The important

FIG. 13. First and second order perturbative diagrams cont
uting to the total energy of the Hubbard Hamiltonian. Only a fe
second order diagrams are shown.
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point to notice is that the introduction of the reduced Ham
tonian ~25! is equivalent to the replacement of the differe
U andJ interactions by the screened values given by

Ũ i5Ui2Ji
NN , ~92!

J̃i j 50.

This is physically very reasonable, because in a lat
with infinite dimensions, the interaction between charges
cated at different sites are screened out completely by
charge induced in the nearest-neighbor sites. Moreo
charges located in the same atom see also the scre
charge cloud that reducesU to Ũ i5Ui2Ji

NN , with Ji
NN being

the interaction between an electron located in the atom
that charge cloud.

With the new effective interactionsŨ i andJ̃i j we find that
only the diagrams withŨ i

2 or Ũ i Ũ j contribute to the second
order energy. We should also realize that in the DMF
proximation all the interatomic off-diagonal termsnias; j bs

can be neglected~remember that we have assumed th
nias; ibs50 inside the atom!. This shows that, in a secon
order perturbation theory, only the diagram labeledb1 in Fig.
13 contributes to the energy. This is precisely what we c
sidered in Sec. III as part of the argument leading
EI@$nias%#.

Coming back to the case of molecules, we have found
in the exchange-extraatomic correlation energyJia

NN is
changed byJia @Eq. ~91!#. This is equivalent to introducing

FIG. 14. ~a! Second order correlation energy for HF: full line
diagonal term; dashed line, off-diagonal term.~b! Same for H2O.
Calculations are performed using an optimized minimal basis:
H(1s)F(1s2,2s2,2p2);H2O:H(1s)O(1s2,2s2,2p2).
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the diagrama4 in Fig. 13. In analogy with the DMF, this
result suggests to introduce screened values of the inte
tions that we define for the new case as follows:

Ũ ia5Uia2Jia , ~93!

J̃i j 50.

We also reach the same conclusion, considering how
total exchange-correlation energy appears as a modifica
of the initial hole (12nias), that is partially changed into a
new correlation holef ias(12nias). This can be understood
more clearly if we write@following Eq. ~23!#:

EXC@$nias%#52
1

2 (
ias

F ~12 f ias!Jianias~12nias!

2
1

2 (
ias

f iasUianias~12nias! ~94!

with f ias representing the new correlation hole fraction i
side the sitei. Equation~94! shows that (Uia2Jia) is the
effective interaction associated with the correlation fluctu
tions created by the intrasite Coulomb potential, in agr
ment with Eq.~93!. This result suggests to calculate the co
relation energy associated with the intra-atomic fluctuatio

using the screened interactionsŨ ia5Uia2Jia andJ̃i j 50. In
the DMF approximation, this energy is calculated in seco
order perturbation theory using only the diagramb1 in Fig.
13. In the case of systems for whichnias; j bsÞ0 and
nias; ibsÞ0 we also have to include other diagrams, simi

to the ones shown in Fig. 13, which are proportional toŨ i
2 or

Ũ i Ũ j . Consider first the diagrams labeledb1 , b2 and b3,

which are proportional toŨ i
2 . One can prove easily, usin

the sum rule@Eq. ~10!#, that when we move from diagram
b1 to b2 andb3, the contribution of these second order term
to EI (2) decreases in every step faster than the fraction
holexias @see Eq.~91!# that becomes localized in the atomi.
Typically one finds that the diagramb2 contributes roughly
as xias/2 times the diagramb1. Similarly, diagramb3 con-
tributes likexias/2 times the diagramb2. On the other hand
we have found in typical cases~see below! thatxias is never
larger than 0.2–0.3. Then, we conclude that one can neg
the diagramsb2 andb3 with an accuracy better than 15% i
the calculation ofEI (2).

Consider next diagramsb4 andb5. We also find that dia-
gramb5 is negligible compared withb4. However, we have
found that diagramb4 can be important and ,in some case
comparable to the contribution given byb1 ~see the discus-
sion below!.

This means that in second order perturbation theory,
can calculateEI (2) using only diagramsb1 andb4. Thus, we
should replace Eq.~65! by the following expression:

:
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EI (2)@$nias%#

52(
i

H Ũ i
2

2 (
asÞbs8

nias~12nias!nibs8~12nibs8!

Wab

2 (
j (Þ i )

Ũ i Ũ j

2 (
a8s8(Þas),bsÞb8s8

3
~nia, j bs!2~nia8, j b8s8!

2

Wab8 J , ~95!

where nia, j bs is an off-diagonal component of the densi
matrix, andWab8 the mean energy of the virtual excitation
associated with thenia, j bs(v) density of states.

In order to understand the importance of the second t
of Eq. ~95!, we consider first two different limiting cases. F
a diatomic molecule, with a strong covalent bond~think of
H2), (n11s,21ss)25n11ss(12n11ss)5n21ss(12n21ss), and it
is easy to see that the second term of Eq.~95! yields the same
contribution as the first one. On the other limit, conside
crystal with an orbital per site having Z nearest neighbors
this particular case~assuming the exchange hole located
the NN sites!, we see that@Eqs. ~12!, ~13!# Z(n1,2s)2

5n1s(12n1s). Then we can conclude that the second te
of Eq. ~95! is Z times smaller than the first one. This simp
argument shows why we can expect the second term of
~95! to be important for molecules having localized bond
and negligible for system having resonant bonds, such a
A detailed calculation of those terms confirms that the re
tive contribution of the off-diagonal diagram decays ve
quickly with the number of neighbors. Figures 14~a! and
14~b! show our results for HF and H2O. In both cases, we
calculate, using a minimal basis@HF: H~1s! and
F(1s,2s,2p), H2O:H(1s), and O(1s,2s, and 2p)#, the first
and second term of Eq.~95! as a function of the distanc
between atoms. Notice that in the case of H2O, we keep the
or
fo
r-
in
e
n
n
th
o

as
e

m

a
n

q.
,
Si.
-

molecule angle constant, and change simultaneously b
HO distances. These results show the importance of inc
ing the second term of Eq.~95! for the accurate determina
tion of the correlation energy for small molecules. At th
same time, they confirm that its relevance decays rap
with the number of atoms in the molecule: the off-diagon
contribution of Eq.~95! is much more important for HF than
for H2O. F and O provide the larger contribution to the i
traatomic correlation energy in these two molecules. The
duction in the contribution of the off-diagonal terms is r
lated to the number of neighbors that each of these atoms
in the corresponding molecule: while F has only one nei
boring H in HF, the oxygen has two H atoms as neighbors
H2O.

In order to calculate the correlation energyEI@$nias%# of
the molecule to all orders inUi , we have extended our ap
proach of Sec. III, and introduced an interpolation betwe
theUi→` and theUi→0 limits, taking into account that the
dominant term contributing toEI@$nias%# for molecules,the
first term in the right-hand side of Eq.~75!, can be approxi-
mated by a similar expression withxias redefined by the
equation

xias5 (
bs8(Þas)

Ũ i

Wab
nibs8~12nibs8!

1 (
j (Þ i ),a8s8(Þas),bsÞb8s8

Ũ j

Wab8

3
~nia, j bs!2~nia8, j b8s8!

2

nias~12nias!
, ~96!

where the second term represents the new off-diagonal t
associated with the diagrams of Fig. 13. In practice, we c
culateEI@$nias%# defining a parameterh ias such that
h ias511

(
j (Þ i ),a8s8(Þas),bsÞb8s8

~Ũ j /Wab8 !@~nia, j bs!2~nia8, j b8s8!
2/nias~12nias!#

(
bs8Þas

~Ũ i /Wab!nibs8~12nibs8!

~97!
sis.
d

of
ap-
ap-

as

en-
nce
and replace, in Eq.~75!, xias by h iasxias .
Our proposal provides a very good description of the c

relation energy. Figure 15 compares our estimate
EI@$nias%# with the result of a standard configuration inte
action~CI! calculation for the HF molecule. We have used
both calculations a minimal basis. The agreement betw
the two results is excellent, in despite of the quite differe
complexity of the two methods. This is specially importa
considering how the computational effort increases with
number of atoms in the molecule: the cost of our meth
increases linearly with the number of orbitals, in contr
with the factorial behavior of CI calculations. The sam
-
r

en
t
t
e
d
t

method can be applied to calculations with extended ba
Figures 16~a! and 16~b! compare the total energy for HF an
H2O calculated with a minimal basis~dashed line! and more
complete basis~continuous line! @HF: H(1s,2s,2p) and
F(1s,2s,2p, and 3d), H2O:H(1s,2s,2p) and O(1s,2s,2p,
and 3d)#. These results confirm the variational character
our approach. Finally, it has to be emphasized that our
proach provides a significant improvement over other
proximate methods commonly used in quantum chemistry
Moller-Plesset~MP! calculations.44 MP calculations provide
a good description of the correlation effects close to the
ergy minimum. Our approach reproduces well that dista
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range~as shown in the examples above! and provides a very
good description of the highly correlated limit relevant f
large interatomic distances.

VI. CONCLUSIONS

The main body of this paper is addressed to analyz
generalized Hubbard Hamiltonians, showing how within
DMF approximation one can find either a local density o
many-body solution. In our LD approach, we show how
define an appropriatelocal potential associated with each o
the localized orbitals used in the LCAO Hamiltonian. In o
many-body solution, we introduce an appropriate self-ene
for a degenerate multilevel case and calculate, using con
tional Green-function techniques, the general electro
properties of the system.

We have applied these ideas to a multilevel Anders
model of an impurity, a quantum dot or a lattice, and ha
found that our results can be applied to an extensive rang
parameters~typically, for U/T&10) that covers most of the
cases one is interested in.

In a second step, we have also considered how to use
previous analysis for studying more general cases, say, c
tals or molecules. We have shown how one has to ext
generalized Hubbard Hamiltonians to analyze these c
and have found, considering the crystal Si and the molec
HF and H2O, good results for the ground state energies
these examples. This comfirms, not only the validity of o
approach for generalized Hubbard Hamiltonians, but a
the validity of our extension to more realistic systems.
conclusion, we expect to have shown that the approach
sented in this paper offers a very promising method for a
lyzing in a very realistic way the properties of highly corr
lated systems.
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FIG. 15. Correlation energy for HF calculated using~a! a CI
method~full line!; ~b! our approach~dashed line!.
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APPENDIX A: CALCULATION OF THE ATOMIC GREEN
FUNCTION

The atomic Green function of Hamiltonian~30! is calcu-
lated using the conventional equation of motion:

v^^Â;B̂&&5^0uÂB̂1B̂Âu0&1^^@Â,Ĥat#;B̂&&, ~A1!

where Â and B̂ are general fermion operators,u0& is the
ground state of the atomic system, and^^Â;B̂&& the Fourier-
transformed in time of the retarded Green function2 iu(t
2t8)^0uÂ(t)B̂(t8)1B̂(t8)Â(t)u0&.

Starting withÂ5 ĉias andB̂5 ĉias
† , we obtainGi ,aa

(at)s as a
function of new two-body Green functions

~v2Eia
s !Giaa

(at)s511 (
bs8(Þas)

Ũ i^^ĉiasn̂ibs8 ; ĉias
† &&.

~A2!

New equations for each of these Green functions hav
be obtained, in such a way that other new three-body Gr
functions appear. The procedure has to be repeated again
again until we get a system of closed equations. This can
finally achieved for the atomic Hamiltonian@Eq. ~30!# due to
the finite number of orbitals the atom has.

FIG. 16. ~a! Binding energy for HF: full line, optimized minima
basis; dotted line: H(1s,2s,2p)F(1s2,2s2,2p2,3d). ~b! Same for
H2O. The extended basis used in this case is the followi
H(1s,2s,2p)O(1s2,2s2,2p2,3d). Experimental heats of formation
~Ref. 45! for these molecules are: 6.120 eV~HF! and 10.167 eV
(H2O).
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APPENDIX B: THREE-POLE APPROXIMATION
FOR THE ATOMIC GREEN FUNCTION

The coefficientsAn
a of the Green function

Gi ,aa
(at)s5

A0
a

v2Eia
s 1 i01

1•••1
ANi

a

v2Eia
s 2Ũ iNi1 i01

1•••

1
A2M21

a

v2Eia
s 2Ũ i~2M21!1 i01

~B1!

with An
a given by Eq.~31!, can be found directly to satisfy

the following sum rules:

(
n50

2M21

An
a51, ~B2!

(
n50

2M21

nAn
a5 (

bs8Þas
^n̂ibs8&, ~B3!

(
n50

2M21

n2An
a5 (

bs8Þas
^n̂ibs8&1 (

(bs8)Þgs9)Þas
^n̂ibs8n̂igs9&

~B4!

with higher sum rules associated with correlation functio
depending on more than two particles. Equations~33!–~35!
are particular cases of Eqs.~B2!–~B4!, for the Green func-
tion of Eq. ~32!.

APPENDIX C: GENERALIZATION OF EQ. „73…

Here, we discuss how to generalize Eq.~73! into the form
~74!, where new values ^a&, ^b& and ^c@nias(1
2nias)/T2#&, have been introduced.

Consider, as an example, the third case^c@nias(1
2nias)/T2#&. Values of c for different Ũ/T and M have
been given in Table II. Assume that these values can be fi
by an interpolative equation that takes the form

c5Fc01c08
Ũ

T
1c09S Ũ

T
D 2G1Fc11c18

Ũ

T
1c19S Ũ

T
D 2G2M

1Fc21c28
Ũ

T
1c29S Ũ

T
D 2G ~2M !2 ~C1!
e

ev
s

ed

~more general polynomials can be easily used in the fo
explained below!.

In the mean valuêc@nias(12nias)/T2#& we find differ-
ent terms, behaving as

c̃i S Ũ

T
D r

~2M !s
nias~12nias!

T2
~C2!

where c̃i is a constant. Our way of defininĝc@nias(1
2nias)/T2& implies replacing terms such as~C2!, by the
equation

c̃i Ũ
r
F(

as
nias

3/s11~12nias!3/s11G s11

(
as

Ta
r 12nias

2 ~12nias!2

. ~C3!

Notice that fornias5ni andTa5T, Eq. ~C3! goes into~C2!,
since the term multiplyingc̃i Ũ

r in Eq. ~C3! behaves as
(2M )s and the other factors are immediately recovered.

Equation~C3! is introduced taking as the weighting facto
of each orbitalnias

2 (12nias)2, and adjusting theT power
and thenias(12nias) power of the numerator to the limi
given by Eq.~C2!. Another example, coming from the ave
age ofa, would be the term

ãi S Ũ

T
D r

~2M !s, ~C4!

with ãi also being a constant. In this case, we replace
~C4! by

ãi Ũ
r
F(

as
nias

2/s11~12nias!2/s11G s11

(
as

Ta
r nias

2 ~12nias!2

. ~C5!
d
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