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A detailed discussion of the local linear combination of atomic orbitals �LCAO� orbital occupancy �OO�
density functional approach, for calculating the total energy and electronic properties of solids, is presented. An
approximation to the exchange-correlation energy within the OO approach is discussed to improve the com-
putational efficiency. This exchange-correlation energy is incorporated into an efficient first-principles tight-
binding code �FIREBALL� in which the Hartree contribution is also calculated as a function of the orbitals
occupancies, combining the advantages of the FIREBALL and LCAO-OO approaches. The calculations per-
formed for Si, diamond, and graphene �lattice parameter, cohesive energy, bulk modulus, and electronic band
structure� show the good accuracy of the approximations discussed in the paper and indicate the suitability of
the FIREBALL-OO approach for calculating the electronic properties of solids.
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I. INTRODUCTION

Density functional theory1–3 �DFT� has become the
method of choice in condensed matter physics for the pre-
diction of the electronic and geometric structure of mol-
ecules, surfaces, and bulk solids. DFT shows that the total
energy of this complicated many-body problem can be cal-
culated solely in terms of the electron charge density. This
charge density can be determined from an auxiliary one-body
problem, where a single particle moves in an effective po-
tential due to all the other electrons.4 Thus, DFT provides, in
principle, an exact mapping of the problem of a strongly
interacting electron system �in the presence of the nuclei�
onto that of a one-body problem. However, the effective po-
tential, in particular the so called exchange-correlation �XC�
potential, is not known exactly and approximations are
needed. The simplicity and wide applicability of DFT rests
on the continuous research effort in the development of ap-
proximate XC functionals with improved properties, with the
goal of reaching chemical accuracy. Generalized gradient
approximations5 �GGAs� and meta-GGAs, where the charge
density and some of its derivatives are included in the XC
functional, are a significant step in this direction, correcting
many of the deficiencies of the commonly used local density
approximation6 �LDA�, in particular the overestimation of
cohesive energies and energy barriers, that was limiting its
massive application in the field of computational chemistry.

Although the solution of the effective one-body problem
has been traditionally implemented in extended basis sets,
like plane waves, local orbital basis sets have been used to
improve significantly the computational performance of elec-
tronic structure calculations.7–21 Among their many funda-
mental advantages, order-N algorithms can be easily imple-
mented in a local-orbital framework �see, e.g., Refs. 22–24�.
Apart from the use of atomiclike orbitals, that is common to
all these methods, in many of these approaches further ap-
proximations are made, with the purpose of increasing the
computational efficiency, with as little loss of accuracy as
possible. Following this idea, efficient first-principles tight-

binding �TB� molecular dynamics methods,25 like the
FIREBALL code,17–20 have been developed, whose main char-
acteristics are �1� a real-space technique �i.e., no need for
supercells or grids�, �2� a reduced set of optimized atomiclike
orbitals as basis set, and �3� efficient, two-dimensional,
tabulation-interpolation schemes to obtain the effective TB
Hamiltonian matrix elements as well as their derivatives to
obtain the forces. One of the main difficulties to overcome in
these methods is the efficient calculation of XC contributions
to the Hamiltonian and total energy.15,20

Local-orbital schemes are also the natural playground for
models, like the Anderson or Hubbard Hamiltonians, which
have been used to describe systems where electron correla-
tion effects are so important that the band picture, implicit in
all the approaches described above, breaks down. The estab-
lished methods in this field are based on Green’s functions
and self-energies which are naturally written in terms of lo-
cal orbitals. This reflects the fact that the more important
contributions to the correlation energy come from the local
intrasite terms, an idea exploited in the dynamic mean-field
method26 �DMF�, that is becoming one of the key tools for
improving our understanding of these correlated systems. Or-
bital occupancies are the natural variables in these schemes,
as exemplified by the DMF, where the essential idea is to
replace a lattice model by a single-site impurity problem
embedded in an effective medium determined self-
consistently.

Traditionally these two fields, electronic structure calcu-
lations based on DFT for realistic materials and sophisticated
many-body techniques applied to model Hamiltonians, ap-
pear as two completely different, even opposite, approaches
to the electronic properties of the system. However, once the
electronic structure calculations are formulated in terms of
local orbitals several connections between the two ap-
proaches can be naturally established. The orbital occupancy
�OO� method27,28 discussed in this paper combines the natu-
ral advantages of these two approaches by expressing the
energy and potentials in terms of the orbital occupancies
�n���. These �n��� are the inherent variables of generalized
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Hubbard Hamiltonians, from which our exchange-correlation
energies are derived. This formalism allows us to include in
a natural way the many-body corrections �with significant
improvements on some basic deficiencies of standard XC
implementations like the self-interaction correction29�, while
maintaining the calculational simplicity. This method is
based on an alternative approach to DFT, in which instead of
the electronic density ��r�� we use the orbital occupancies
�n��� as the central quantity:

��r�� Þ �n��� . �1�

The usual DFT is based on the Hohenberg-Kohn theorem.1

This theorem can be rewritten in terms of �n��� �see Refs. 28
and 30�, with the total energy as a function of the orbital
occupancies, E=E��n����; then, the energy of the ground
state is found at the minimum of the function. In a similar
way to the Kohn-Sham equations4 in the �-based DFT, we

introduce an effective Hamiltonian Ĥeff using orbital-
dependent potentials:

V��
mb =

�Emb��n����
�n��

, �2�

where Emb is the many-body energy associated with the
electron-electron interaction; the �n��� are determined self-

consistently from Ĥeff. In similarity with the standard DFT, it
is not possible in general to find an analytical expression for
the exact exchange-correlation energy EXC��n����, but accu-
rate approximations can be developed.

The purpose of this paper is to present recent advances in
the OO method. First, we provide a full account of its theo-
retical basis, with a detailed explanation of how the different
contributions to the total energy, and in particular the
exchange-correlation terms, can be written in terms of the
orbital occupancies. This complete analysis, presented in
Sec. II, is based on different ideas covered individually in
previous papers.27–29,31,32 We should stress that this one-
electron solution �with VXC��n����� facilitates the description
of electron correlated effects and it can be used as a starting
point for the many-body calculations needed to properly de-
scribe strongly correlated systems.31 Then, we show in Sec.
III how this linear combination of atomic orbitals �LCAO�
OO approach, applicable in principle to any scheme based on
a local-orbital basis, can be implemented within the frame-
work of the FIREBALL code.17–20 Finally, we discuss a prac-
tical simplification of our expression for the exchange en-
ergy, that reduces significantly the computational burden,
that is one of the possible limitations of this and other ap-
proaches �like exact-exchange methods� where an improved
description of exchange is attempted. In this paper we have
chosen to analyze the case of well-known crystals like Si,
diamond, and graphene; although we believe that the main
advantage of our LCAO-OO approach appears for analyzing
the cases of strongly correlated systems, it is in order to
check first that we recover the well-known solutions of those
conventional crystals. In particular, our analysis shows that
our treatment of exchange and correlation represents a sub-
stantial improvement upon DF-LD approximations. More-
over, our results of Sec. IV also show that the FIREBALL-OO

approach provides an accurate and efficient alternative for
the calculation of the electronic and structural properties of
solids.

II. BASIC FORMULATION, LCAO-OO HAMILTONIAN,
HARTREE, EXCHANGE, AND CORRELATION

ENERGIES

We follow Ref. 27 and start from the general Hamiltonian

Ĥ0 = �
i��

��i� + Vi�,i�
PS �n̂i�� + �

i��,j��
j��i�

�ti�,j� + Vi�,j�
PS �ĉi��

† ĉj��

+
1

2 �
i��,j��

k���,l���

Ol�k�
i�j� ĉi��

† ĉj���
† ĉk���ĉl�� �3�

where a Löwdin orthogonal basis �i�=� j��S−1/2�i�j�	 j� has
been used as the basis set to define the operators ĉ†,ĉ and
n̂= ĉ†ĉ; Si�j�= �	i� 		 j�
 is the orbital overlap and 	i� is the
local basis set �atomiclike� which is going to be used in our
LCAO-OO method, i indicating an atom and � an orbital. In
Eq. �3�, �i�+Vi�,i�

PS and ti�,j�+Vi�,j�
PS define the one-electron

terms of our initial Hamiltonian �with the pseudopotential
�PS� contributions included�, and Ol�k�

i�j� is the many-body
term:

Ol�k�
i�j� =� �i��r��� j��r�� �

1

	r� − r�� 	
�k��r�� ��l��r��d3r d3r�.

�4�

Equation �3� is still completely general; the LCAO-OO
Hamiltonian analyzed here in more detail and introduced in
Ref. 27 reads as follows:

Ĥ0 = �
i��

��i� + Vi�,i�
PS �n̂i�� + �

i��,j��
j��i�

�ti�,j� + Vi�,j�
PS �ĉi��

† ĉj��

+
1

2 �
i��,i���

�i����i���

Ui�,i�ĉi��
† ĉi���

† ĉi���ĉi��

+
1

2 �
i��,���
������

Ui�,i�
x ĉi��

† ĉi���
† ĉi���ĉi��

+
1

2 �
i��,j���

�j�i�

Ji�,j�ĉi��
† ĉj���

† ĉj���ĉi��

+
1

2 �
i��,j���

�j�i�

Ji�,j�
x ĉi��

† ĉj���
† ĉi���ĉj��

+ �
i��,j��

k���
�j��i��

�k����i��,j���

hk�,i�j�ĉk���
† ĉi��

† ĉj��ĉk���
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+ �
i��,j��

k���
�j��i��

�k����i��,j���

hk�,i�j�
x ĉk��

† ĉi���
† ĉk���ĉj��

+
1

2 �
i��,j��

k���,l���
all different �NN�

Ol�k�
i�j� ĉi��

† ĉj��
† ĉk���ĉl���. �5�

In this approximation, the many-body terms are written ex-
plicitly showing the contributions depending on one, two,
three, or four orbitals. The different values U, J, Ux, Jx, h, hx,
and O can be explicitly found using Eq. �4� and the indices
indicated for each case. In particular, Ui�,i� and Ui�,i�

x are
associated with the interaction between electrons in the same
atom i; Ji�,j� and Ji�,j�

x define part of the interaction between
two orbitals in different atoms i and j; and hk�,i�j� defines for
k�= i� or j� the rest of the interaction between two orbitals
in atoms i and j while, for k�� i� or j�, it defines in com-
bination with hk�,i�j�

x the interaction between the three orbit-
als k�, i�, and j�. We stress that terms varying like
ĉk��

† ĉk���
† ĉi���ĉj�� or ĉi��

† ĉj���
† ĉk���ĉk�� have been neglected

in Hamiltonian Ĥ0; this has been checked in our calculations
to be a fair approximation to Hamiltonian �4�, an expected
result considering that their Hartree-Fock mean values are an
order of magnitude smaller than the mean values of the terms
included in Eq. �5�, when the overlap between orbitals, S, is
used as an expansion parameter �see Ref. 33 for a discussion
of this point�. Finally, in the term Ol�k�

i�j� we have included
four different orbitals i�, j�, l�, and k�, only if they all
belong to either one atom or two nearest-neighbor �NN� at-
oms �this approximation is also validated by the calculations
presented below; in practice, it means that the dipole-dipole
interactions can be important for NN atoms�. It is worth
mentioning at this point that the Hamiltonian �5� can be eas-
ily generalized to include van der Waals forces keeping in
Eq. �5� the appropriate Ol�k�

i�j� terms �see Ref. 34 for a discus-
sion of this point�.

Hartree, exchange, and correlation energies

Ĥ0 is our basic LCAO-OO Hamiltonian. The Hartree and
exchange contributions to the energy of the system can be
easily obtained by calculating the mean value of its different
terms in a conventional way. The Hartree contribution is
given by �we define ni��= �0 	 n̂i�� 	0
 and ni�j�,�

= �0 	 ĉi��
† ĉj�� 	0
, 	0
 as the ground state of the system�

Eh = �
i��

��i� + Vi�,i�
PS �ni�� + �

i��,j��
j��i�

�ti�,j� + Vi�,j�
PS �ni�j�,�

+
1

2 �
i��,i���

Ui�,�ni��ni��� +
1

2 �
i��,i���

���

Ui�,�
x ni�i�,�ni�i�,��

+
1

2 �
i��,j���

�j�i�

Ji�,j�ni��nj��� +
1

2 �
i��,j���

�j�i�

Ji�,j�
x ni�j�,�nj�i�,��

+ �
i�,j��

k���
�j��i��

�k����i�,j���

hk�,i�j�nk���ni�j�,�

+ �
i�,j��

k���
�j��i��

�k����i�,j���

hk�,i�j�
x nk�j�,�ni�k�,��

+
1

2 �
i��,j��

k���,l���
all different

Ol�k�
i�j� ni�l��nj�k���; �6�

this energy is obtained by contracting the operators ĉ† and ĉ
of Eq. �5� having the same spin, and eliminating any restric-
tion on the spins; in this way, we introduce some self-
interaction terms that we discuss below. Notice also that the
restrictions on the indices introduced in Eq. �6� guarantee
that there is no term repeated; for instance, in Ji,j, the condi-
tion i� j avoids a U term already introduced before. The
exchange contribution to the energy is obtained by contract-
ing the operators ĉ�

† and ĉ�� �taking �=��� and, at the same
time, subtracting those �self-interaction� terms that appear in
Eq. �6� even if the commutation rules for ĉ† and ĉ forbid
them to contribute to the Hartree energy �for instance, in
1
2�i��,���Ui�,�ni��ni���, the term with �=�� and �=� does
not contribute to the energy as can be seen by inspection of
Eq. �5� since ĉi��

† ĉi��
† = ĉi��ĉi��=0�. This yields the following

exchange energy:

Ex = −
1

2�
i��

Ui�,�ni��ni�� −
1

2 �
i�,��
���

Ui�,�ni�i�,�ni�i�,�

−
1

2 �
i�,��
���

Ui�,�
x ni��ni�� −

1

2 �
i�,j��
�j�i�

Ji�,j�ni�j�,�nj�i�,�

−
1

2 �
i�,j��
�j�i�

Ji�,j�
x ni��nj�� − �

i�,j��
j��i�

�hi�,i�j�ni��ni�j�,�

+ hj�,i�j�nj��ni�j�,�� − �
i�,j��

k�
�j��i��

�k��i�,j��

hk�,i�j�ni�k�,�nk�j�,�

− �
i�,j��

k�
�j��i��

�k��i�,j��

hk�,i�j�
x nk��ni�j�,�

−
1

2 �
i�,j��
k�,l�

all different

Ol�k�
i�j� ni�l�,�nj�k�,�. �7�

In this equation, − 1
2�i��Ui�,�ni��ni�� is the self-interac-

tion correction for the electron i�, while
−� i�,j��

j��i�
�hi�,i�j�ni��ni�j�,�+hj�,i�j�nj��ni�j�,�� is also a self-

interaction correction associated with the hopping
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hk�,i�j�nk��ĉi��
† ĉj��; the other terms − 1

2Ui�,�ni�i�,�ni�i�,�,
− 1

2Ui�,�
x ni��ni��, − 1

2Ji�,j�ni�j�,�nj�i�,�, − 1
2Ji�,j�

x ni��nj��,
−hk�,i�j�ni�k�,�nk�j�,�, −hk�,i�j�

x nk��ni�j�,�, and

− 1
2Ol�k�

i�j� ni�l�,�nj�k�,� come from contracting ĉ�
† and ĉ��, tak-

ing �=��.
Ex can be written in a more convenient way with the

following arguments.
(a) Terms associated with Ui�,� and Ji�,j� in Ex. The con-

tribution − 1
2� i�,��

���
Ui�,�ni�i�,�ni�i�,�− 1

2� i�,j��
�j�i�

Ji�,j�ni�j�,�


nj�i�,� can be written as follows:33

−
1

2 �
i�,��
���

Ui�,�ni�i�,�ni�i�,� −
1

2 �
i�,j��
�j�i�

Ji�,j�ni�j�,�nj�i�,�

= −
1

2 �
i�,�

Ji��
eff ni���1 − ni��� �8�

using the identity � j���i��ni�j�,�nj�i�,�=ni���1−ni���. This
means that the charge ni�� interacts with the hole 1−ni��

via the effective interaction Ji��
eff . Part of this hole, say

xi�1−ni���, is localized in the atom i �and is associated with
the contribution ������ni�i�,�ni�i�,��, while the fraction
�1−xi��1−ni��� is localized outside the atom. This means
that Eq. �8� can also be rewritten as

−
1

2 �
i�,�

Ji��
eff ni���1 − ni��� = −

1

2�
i��

xiŨi�ni���1 − ni���

−
1

2�
i��

�1 − xi�Ji�ni���1 − ni���

�9�

where Ũi is the mean value of U for the atom i, and Ji� the
mean interaction between ni�� and the hole �1−xi�ni�� local-

ized outside the atom in such a way that Ji��
eff =xiŨi�

+ �1−xi�Ji�. In this paper we will consider systems for which
xi=0 due to their symmetry; then Ji��

eff is practically the spin-
independent interaction �we only consider here nonmagnetic
systems� between NN orbitals.32 The rest of the hole, ni��, is
associated with the self-interaction correction
− 1

2�i��Ui�,�ni��ni��.
Then, terms in Ui�,� and Ji�,j� can be written as follows:

−
1

2 �
i�,�

�Ui�,�ni�,� + Ji�
eff�1 − ni����ni��. �10�

(b) Terms associated with hk�,i�j�. The terms associated
with hk�,i�j�, hi�,i�j�, and hj�,i�j� can be written as

− �
i�,j�
k��

�j��i��

hk�,i�j�ni�k�,�nk�j�,�. �11�

Noticing that �k�ni�k�,�nk�j�,�=ni�j�,� allows us to define an
effective spin-independent hi�,j�

eff such that32

− �
i�,j��

k�
�j��i��

hk�,i�j�ni�k�,�nk�j�,� = − �
i�,j��

�j��i��

hi�,j�
eff ni�j�,�.

�12�

In this equation, hi�,j�
eff is the effective hopping integral cre-

ated by the hole of one electron upon the i�j� bond,
hi�,j�

eff ĉi��
† ĉj��; hi�,j�

eff is obtained from Eq. �12�, calculating
ni�j�,� from the self-consistent Hamiltonian. In practice,
hi�,j�

eff is an average of hi�,i�j� and hj�,i�j�.
Combining Eqs. �7�, �10�, and �12�, we can rewrite Ex as

follows:

Ex = −
1

2 �
i�,�

�Ui�,�ni�,� + Ji�
eff�1 − ni����ni��

−
1

2 �
i�,��
���

Ui�,�
x ni��ni�� −

1

2 �
i�,j��
�j�i�

Ji�,j�
x ni��nj��

− �
i�,j��

�j��i��

hi�,j�
eff ni�j�,� − �

i�,j��
k�

�j��i��
�k��i�,j��

hk�,i�j�
x nk��ni�j�,�

−
1

2 �
i�,j��
k�,l�

all different

Ol�k�
i�j� ni�l�,�nj�k�,�. �13�

We should stress that, in the extended systems we are going
to consider Ji�

eff can be approximated by Ji�, the interaction
between electrons in nearest-neighbor atoms, if 0.1�ni��

�0.9;28 for ni��→0 �or ni��→1�, Ji�
eff behaves like ni��

1/3 �or
�1−ni���1/3� �see Ref. 28�, yielding the conventional LDA
limit. In reduced systems, like diatomic molecules, Ji�

eff is
exactly Ji�; for instance, in H2 taking one s orbital per atom
Ex can be written as follows:

Ex�H2� = −
1

2 �
i�,�

�Ui�,�ni�,� + Ji��1 − ni����ni��

−
1

2 �
i�,j��
�j�i�

Ji�,j�
x ni��nj�� − �

i�,j��

hi�,j�
0 ni�j�,�

�14�

where hi�,j�
0 is the hopping integral one electron in orbital

i�=1s creates between the two 1s orbitals of the molecule.
Finally we discuss our approximation to the correlation

energy. Following Ref. 27, we obtain the correlation energy

of Ĥ0, by analyzing the generalized Hubbard terms

1

2 �
i��,���

��������

Ui�,�n̂i�↑n̂i�↓ +
1

2 �
i��,j���

�j�i�

Ji�,j�in̂i��n̂j���.

�15�

As discussed in Ref. 27, the correlation energy associated
with these terms is the following:
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Ec = −
1

2�
i��

f i��Ũi� − Ji�
eff�ni���1 − ni��� �16�

where Ũi� and Ji�
eff have been defined above �Eq. �9��; we

interpret Eq. �16� as the energy associated with a modifica-
tion of the exchange hole �now exchange-correlation hole�
whereby a fraction f i��1−ni��� of the exchange hole, �1
−ni���, is transferred to the atom i �which depends27 also on

ni���1−ni����. In Eq. �16�, Ũi� is an average of the intra-
atomic interactions,27 while f i� �f i��1� is a function of

Ũi�−Ji�
eff and the self-consistent charges ni�� �see Ref. 27 for

an equation defining f i��. Equations �6�, �13�, and �16� define
our Hartree, exchange, and correlation energies within our
LCAO-OO approach.

III. FIREBALL-OO APPROACH

Our LCAO-OO method, through Eqs. �6�, �13�, and �16�,
defines the many-body interactions we have to introduce in
our problem. Although this is a straightforward picture, we
should say that the main problem it presents for its friendly
implementation �e.g., molecular dynamics� is the calculation
of the different parameters appearing in these equations, �, t,
U, Ux, J, Jx, h, hx, and O, as functions of the particular
structure one considers. In this paper, we discuss two simpli-
fications we introduce to that problem: �i� In a first step we
analyze the Hartree energy of our system using the approxi-
mations introduced in the FIREBALL code17–20 �an efficient
DFT tight-binding molecular dynamics technique�; �ii� in a
second step, we will show how the exchange energy given
by Eq. �13� can be approximated by a simpler equation.

Regarding the first step, we should say that in this paper
we are going to use the FIREBALL picture. This means taking
local orbitals with a given cutoff in distance,17 and a self-
consistent version, in terms of the orbital occupancies
�ni���,18 of the Harris-functional approach7,8 for calculating
the Hartree energy. All these FIREBALL ingredients amount to
taking the following approximations.

�a� Calculate the one-electron terms, say T�n� and the
Hartree energy Eh�n�, using a FIREBALL code �subtracting the
exchange-correlation terms�.

�b� Then, calculate the exchange-correlation energies with
Eqs. �13� and �16�, which is equivalent to introducing in the
one-electron Schrödinger equations the following local
exchange-correlation potential Vi��

XC �n�:

Vi��
XC �n� =

�Ex�n�
�ni��

+
�Ec�n�
�ni��

. �17�

Then, the effective one-electron Hamiltonian, whose self-
consistent solution yields ni��, is defined by

Ĥeff = Ĥh + �
i��

Vi��
XC n̂i�� �18�

where Ĥh represents the Hartree part of the Hamiltonian,

Ĥh = T̂ + V̂PS + V̂h �19�

�T̂ represents the kinetic energy, V̂PS the ionic pseudopoten-

tial, and V̂h the electron-electron Hartree potential�, which, in
the rest of the paper, is going to be calculated using the
FIREBALL approach. In this approach an input electron den-
sity �in�r��, a sum of atomiclike densities, is introduced,

�in�r�� = �
i��

ni��		i��r��	2, �20�

where �	i�� are the atomiclike fireball orbitals17 that define
our basis set, and �ni��� are the orbital occupation numbers
for the Löwdin-orthogonalized orbitals ��i�� associated with
the �	i�� basis set, which are determined in a self-consistent
fashion.18 This procedure is introduced for reasons of com-
putational efficiency, and is justified by the fact that ��i�� is
the set of orthonormal orbitals that are closest to the original
nonorthogonal orbitals �	i�� in a least-square sense.35 The

electron-electron potential V̂h is

V̂h�r�� =� �in�r�� �d3r�

	r� − r��	
. �21�

The double-counting correction to the total energy is also
written in terms of �in:

Edc = −
1

2
� � �in�r���in�r���

	r� − r��	
dr� dr��. �22�

A. Treatment of the FIREBALL-OO Hamiltonian

In Eq. �17�, the main problem appears for calculating
� /�ni�� in all the terms of Eq. �13�; in Ref. 27, the exchange
potential Vi��

x , was calculated in the following way. First, we
write

Ex = E0
x + Ẽx �23�

where

E0
x = −

1

2�
i��

�Ui�,�ni�� + Ji�
eff�1 − ni����ni��

−
1

2 �
i�,��
���

Ui�,�
x ni��ni�� �24�

and

Ẽx = − �
i�,j��

�j��i��

hi�,j�
eff ni�j�,� − �

i�,j��
k�

�j��i��
�k��i�,j��

hk�,i�j�
x nk��ni�j�,�

−
1

2 �
i�,j��
�j�i�

Ji�,j�
x ni��nj�� −

1

2 �
i�,j��
k�,l�

all different

Ol�k�
i�j� ni�l�,�nj�k�,�.

�25�

Then, we approximate Ex by E0
x, neglecting Ẽx. This is rea-
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sonable because the terms neglected in Ẽx are small com-
pared with the ones included �see below�; in the cases dis-
cussed below, it is also a good approximation to take

Ji�
eff�Ji� �nearest-neighbor interaction�. Ex= Ẽ0

x is used to-
gether with Eq. �21�, to calculate ni�� self-consistently. In the
final step, the total energy E�ni��� is obtained; however, by

using the full equation Ex=E0
x + Ẽx, adding Ẽx in a zero-order

approximation.

In this paper we have explored a second approximation to

Ex, including the terms neglected above, Ẽx, using the fol-
lowing approximation:

Ẽx � −
1

2�
i��

hi�ni��
 �1 − ni���. �26�

This approximation is suggested by the fact that

−� i�,j��
�j��i��

hi�,j�
eff ni�j�,� is the dominant term in Ẽx, and by the

FIG. 1. Cohesive energies for Si, diamond, and graphene as a
function of the NN distance. Different results correspond to
LCAO-OO �1 and 2� and FIREBALL-MCWeda calculations �see
text�. The arrows indicate the experimental position minimum.

FIG. 2. Exchange-correlation energy per atom for Si, diamond,
and graphene. The arrows indicate the experimental position
minimum.
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behavior of this term in the case of a homopolar diatomic
molecule �one orbital per site�. In this limit, hi�,j�

eff is a
constant �does not depend on �ni����, h0, and
−� i�,j��

�j��i��
hi�,j�

0 ni�j�,�=−h0� i�,j��
�j��i��

ni�j�,�=−h0� i�,j��
�j��i��

ni��
1/2 �1

−ni���1/2 �ni�j�,�=ni��
1/2 �1−ni���1/2=nj��

1/2 �1−nj���1/2�. In ex-
tended systems, hi�,j� is expected to depend on ni�� as a
function of ni���1−ni���, as Ji�

eff and f i� do. This suggests

approximating −� i�,j��
�j��i��

hi�,j�
eff ni�j�,�, and Ẽx by

− 1
2�i��hi�ni��

 �1−ni���, hi� being a constant, as shown in
Eq. �26�.

The calculations shown below for Si, C, and graphene
suggest that hi� is well approximated by the equation

hi� � ��Ji�
effd0� �27�

where �, , and d0 are parameters obtained by fitting Eq.

�26� to Ẽx �see below and Table IV�.
With this approximation we write

Ex = −
1

2�
i��

�Ui�,�ni�� + Ji�
eff�1 − ni����ni��

−
1

2 �
i�,��
���

Ui�,�
x ni��ni�� −

1

2�
i��

hi�ni��
 �1 − ni���

�28�

which defines our second approximation for Ex. Then, the
exchange-correlation energy is given by Eqs. �28� and �16�.

IV. RESULTS: Si, DIAMOND, AND GRAPHENE

We have applied our previous formulation to the cases of
Si, diamond, and graphene �graphene is chosen for the sp2

character of its bonds, which allows us to make an interest-
ing comparison with the sp3 bonds of Si and diamond�. In
our discussion we are going to present results for the total
energies and electron bands of these crystals using different
approximations. �i� First, we consider the FIREBALL-OO ap-
proach with the exchange energy given only by Eq. �24�, and

calculate the total energy by adding ẼX in zeroth-order ap-
proximation �approximation 1�. �ii� In a second set of calcu-
lations, we use Eq. �28� for the exchange energy �approxi-
mation 2�. Both calculations will be compared with standard
FIREBALL-LDA �FIREBALL-multicenter weighted exchange
density approximation26 �MCWEDA�� results20.

In these calculations, we have used optimized sp3 basis
sets for carbon and silicon, which have been obtained by
mixing atomiclike fireball orbitals17 corresponding to two
different atomic calculations. In particular, the optimized or-
bitals 	 are

	�r�� = A�c	0�r�� + �1 − c�	1�r��� �29�

�A is a normalizing constant� where 	0�r�� is the standard
fireball orbital for a neutral atom, and 	1�r�� corresponds to a
double-excited �+2� atom. In both atomic calculations we
have used a cutoff radius of Rc=4.5 a.u. �5.5 a.u.� for the s
and p orbitals of carbon �silicon�. The parameter c is ob-
tained by minimizing the total energy for the system under
study;36 at the same time, the optimized orbitals yield signifi-
cantly improved structural parameters �details will be pub-
lished elsewhere37�. This basis optimization yields similar
results to those obtained with the optimization proposed in
Ref. 21. For example, for carbon, our optimization yields a
lowering of the total energy, as compared with the standard
fireball basis set 	0, for diamond of the order of 0.9 eV per C
atom in similarity with the findings of Ozaki and Kino.21 A
further comparison with the results presented by these au-
thors for converged basis sets suggests that our results are
0.4 eV/C atom above converged basis set results. A simi-
lar analysis shows that for the case of Si our results are
0.9 eV per Si atom above converged basis set results.

We should also mention that the different parameters of

Hamiltonian H0
ˆ —U, Ux, J, Jx, etc.—that correspond to the

orthogonal orbitals, �i�=� j��S−1/2�i�j�	 j�, are calculated us-
ing small clusters of up to eight atoms including the atoms
associated with the interaction; for example, an intra-atomic
Ui�,� interaction is calculated with a five-atom cluster �four
for graphene�, i being the central atom and the other four
atoms its nearest neighbors. This approach has been tested
with clusters of different sizes.

Figure 1 shows the cohesive energy for Si, C, and
graphene as a function of their NN distance. For each case,
this figure represents the results of our FIREBALL-OO method
using the two approximations mentioned above �referred to
as approximations 1 and 2�; in the same figure we also rep-
resent for the sake of comparison the cohesive energies cal-
culated using the MCWEDA approximation to the LDA
exchange-correlation energy in the FIREBALL code
�MCWEDA is an approximation introduced for the efficient
calculation of exchange-correlation terms in first-principles
tight-binding molecular-dynamics methods20�. A comparison
of the total energy for the different OO methods shows that
approximations 1 and 2 yield very similar results for dia-
mond, while for graphene �Si� they differ by 0.1 �0.3� eV. We
should say that in Figs. 1 and 2, the total energy per atom
�cohesive energy� and the exchange-correlation energy are
shown as functions of the nearest-neighbor distance to facili-
tate the comparison between different structures. The atomic
reference �which is subtracted from all the values discussed
below� for the total energy or the exchange-correlation en-

TABLE I. Cohesive and exchange-correlation energies for silicon, as calculated with different methods at
the equilibrium distance. The experimental values are also shown, taken from Ref. 39.

FIREBALL-OO-1 FIREBALL-OO-2 FIREBALL-MCWEDA PW-LDA Expt.

Ecoh �eV� 3.6 3.8 3.6 5.1 4.6

EXC �eV� 5.0 5.1 4.9 5.6 5.1
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ergy is calculated as follows: �a� in the case of FIREBALL-OO,
from a FIREBALL-OO calculation of the isolated atom,38 tak-
ing into account spin-polarization effects; �b� for FIREBALL-
MCWEDA, from a LDA calculation of the corresponding
atom, adding also spin-polarization corrections �0.66 and
1.09 eV for Si and C, respectively�. A fair estimation of the
relative merit of the different methods used in this paper for
the description of the total and exchange-correlation energies
of solids is provided by the results obtained for a converged
plane-wave �PW� LDA calculation �see Tables I and II�. For
Si and diamond, the PW LDA yields �Si� Ecohesive=−5.1 eV
and EXC=−5.6 eV; �C� Ecohesive=−8.7 eV and EXC=
−9.4 eV, at the experimental lattice constant. Comparing the
cohesive energies of the PW-LDA calculations and the ex-
perimental data, and assuming that the Hartree and kinetic
energies are well converged in the PW-LDA, we deduce that
the XC energies are overestimated in the PW-LDA by �Si�
−0.5 eV; �C� −1.3 eV. Accordingly, we subtract these ener-
gies from the PW-LDA XC energies and define the “experi-
mental” values �Si� EXC

expt=−5.1 eV; �C� EXC
expt=−8.1 eV �these

are the values an exact DFT should yield for the XC energy
at the equilibrium distance�. The experimental XC energies
should be compared with the values of Fig. 2 at the equilib-
rium distances: �Si� EXC�OO-1�=−5.0 eV; EXC�OO-2�=
−5.1 eV; EXC�MCWEDA�=−4.9 eV; �C� EXC�OO-1�=
−7.5 eV; EXC�OO-2�=−7.5 eV; EXC�MCWEDA�=−7.8 eV
�see also Tables I and II�. These values show that our OO
approach yields a fair approximation to the XC energy of the
system, underestimating it by 0.6 eV/atom in the case of C,
while yielding an accurate value for the case of Si. The
MCWEDA, on the other hand, yields values of the XC en-
ergies within 0.2–0.3 eV/atom for C and Si in the diamond
structure. This is due to a cancellation of errors: the
MCWEDA underestimates the LDA values which, in turn,
overestimate XC energies.

The consistency of the previous analysis can be checked
using the cohesive energies calculated at the experimental

equilibrium distances �see Tables I and II�. We obtain �Si�
Ecoh�OO-1�=−3.6 eV; Ecoh�OO-2�=−3.8 eV;
Ecoh�MCWEDA�=−3.6 eV; �C� Ecoh�OO-1�=−6.4 eV;
Ecoh�OO-2�=−6.4 eV; Ecoh�MCWEDA�=−6.8 eV. Using
the above estimated values for the deviation of the XC ener-
gies, and comparing with the experimental cohesive ener-
gies, we deduce that our results are above converged basis
set results by 0.8–0.9 eV and 0.3–0.4 eV for Si and C,
respectively, in excellent agreement with our previous analy-
sis on the convergency of the basis sets employed in these
calculations.

Table III shows the Si, diamond, and graphene experi-
mental cohesive energies, lattice parameters and bulk modu-
lus, compared with the theoretical values calculated with
FIREBALL-OO-1 and 2, as well as FIREBALL-MCWEDA.
Typically, d �the nearest-neighbor distance� is around 2–4 %
larger in all the calculations than in experiments, while Ecoh
is a little smaller �0.6–0.9 eV for Si, 0.6–0.9 eV for dia-
mond, and 0.7–0.9 eV for graphene �see also the discussion
above�; the bulk modulus is within 10% of the experimental
data.39 All these results are very satisfactory, showing the
good accuracy of our FIREBALL-OO approach as well as the
FIREBALL-MCWEDA for the ground state of the system. Fig-

ure 3 shows the different terms of ẼX except the self-
interaction correction − 1

2�i��Ui�,�ni��ni��. As shown in this
figure, Ex

I =− 1
2�i�,�Ji�

effni���1−ni��� is the dominant �apart
from the self-interaction contribution� term of the exchange-

correlation energy. From the different contributions to Ẽx,
Eq. �25�,

Eh
x = − �

i�,j��
�j��i��

hi�,j�
eff ni�j�,� �30�

is the most important one; the other terms

TABLE II. As Table I for diamond.

FIREBALL-OO-1 FIREBALL-OO-2 FIREBALL-MCWEDA PW-LDA Expt.

Ecoh �eV� 6.4 6.4 6.8 8.7 7.4

EXC �eV� 7.5 7.5 7.8 9.4 8.1

TABLE III. Si, diamond, and graphene cohesive energies, nearest-neighbor distance, and bulk modulus
from experiment �Ref. 39� and our various calculations.

Expt. FIREBALL-OO-1 FIREBALL-OO-2 FIREBALL-MCWEDA

Si Ecoh �eV� 4.6 3.71 3.97 3.63

Si d �Å� 2.35 2.45 2.47 2.42

Si B �Mbar� 0.99 1.01 0.87 0.79

C Ecoh �eV� 7.4 6.49 6.47 6.8

C d �Å� 1.55 1.60 1.60 1.58

C B �Mbar� 4.4 4.77 4.49 4.56

Graphene Ecoh �eV� 7.6 6.59 6.66 6.89

Graphene d �Å� 1.42 1.45 1.45 1.43
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Ehx

x = − �
i�,j��

k�
�j��i��

�k��i�,j��

hk�,i�j�
x nk��ni�j�,�, �31�

EJx

x = −
1

2 �
i�,j��
�j�i�

Ji�,j�
x ni��nj��, �32�

and

E4
x = −

1

2 �
i�,j��
k�,l�

all different

Ol�k�
i�j� ni�l�,�nj�k�,� �33�

are also represented in Fig. 3, as well as Ẽx=Eh
x +Ehx

x +EJx

x

+E4
x.

Figure 4 shows Ẽx and the curve

−
1

2�
i��

hi�ni��
 �1 − ni��� = −

�

2 �
i��

�Ji�
effd0�ni��

 �1 − ni���

�34�

whose parameters �, , and d0 have been chosen to give a

good fitting to Ẽx. In Eq. �34� d0 is the experimental distance
between nearest neighbors, while � and  are given in Table
IV �taking for d0 the theoretical values 2.42, 1.60, and
1.45 Å �see Table III�, yields �=5.92, 5.96, and 5.75 har-
trees�.

Notice that in Eq. �34� we have used atomic units in such
a way that � is given in hartrees. The good fitting of Eq. �34�
to the calculated ẼX explains the good agreement found be-
tween our results for FIREBALL-OO-1 and -2: the small dif-
ference between both cases comes from the change in the
self-consistent charges ni�� introduced by the exchange po-

tential �ẼX /�ni��. It should be mentioned, however, that our
FIREBALL-OO-2 approach represents a substantial improve-
ment of the calculation efficiency over FIREBALL-OO-1,
since in FIREBALL-OO-2 for calculating EXC we only used
the parameters U, UX, and J, while in FIREBALL-OO-1 we
also have to calculate heff, hx, Jx, and O. We should also
stress the universal behavior found for h, with � and  al-
most independent of the material considered.

Finally, Figs. 5–7 show the band structure for Si, C, and
graphene, respectively, as calculated with FIREBALL-
MCWEDA and FIREBALL-OO-1 and -2. Although the three
cases yield similar bands, we can appreciate some differ-
ences. �a� The valence bands are narrower for FIREBALL-
MCWEDA �the bands found in this case are closer to con-
ventional LDA calculations20�, while in FIREBALL-OO-2 the
valence bandwidths are �10% larger. �b� The energy gaps
are the largest for FIREBALL-MCWEDA and the smallest for
FIREBALL-OO-2, this case being closer to the experimental
evidence. Typically, the valence bandwidth yielded by
FIREBALL-OO is within 10% of the values provided by other
approaches. In spite of these small differences, we find that
the conduction bands are not very accurate due to the use of
a minimal local orbital basis in our calculations.40

V. CONCLUSIONS

In conclusion, we have presented a detailed discussion of
the LCAO-OO Hamiltonian introduced for calculating the
electronic properties of solids using a local-orbital basis and
an orbital occupancy formulation. This Hamiltonian defines
the starting point used for calculating the exchange-
correlation energy of our system, Eqs. �13� and �16�. In this
paper we also present two important implementations of this

FIG. 3. Different contributions Eh
X, Ehx

X , EJx

X , and E4
X to the ex-

change energy ẼX �see text� for Si, diamond and graphene. EX
I is

also shown for each crystal. The arrows indicate the experimental
position minimum.
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LCAO-OO approach: �i� first, we combine the DF FIREBALL

code with our LCAO-OO method to define the FIREBALL-OO
density functional approximation. This approach combines
the Hartree approximation of FIREBALL with the exchange-
correlation energy of the LCAO-OO method. �ii� In a second
step, we have introduced a simplified LCAO-OO exchange
energy, Eq. �28�, that represents, in terms of computational
efficiency, a substantial improvement as compared to a direct
calculation of this exchange energy.

The results presented in this paper for Si, diamond, and
graphene show the good accuracy of the approximation pre-
sented here and indicate the suitability of our FIREBALL-OO

TABLE IV. �, , and d0 for Si, diamond, and graphene.

Si C Graphene

� �h� 6.35 6.43 6.05

 2.4 2.4 2.4

d0 �Å� 2.35 1.55 1.42

FIG. 4. ẼX and the fitting function �34� for Si, diamond, and
graphene. The arrows indicate the experimental position minimum.

FIG. 5. Electron band structure for Si as calculated with
LCAO-OO �1 and 2� and FIREBALL-MCWeda approaches.
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approach for calculating the electronic properties of solids.
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