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Long distance interactions of ammonia, hydrogen fluoride and water molecules adsorbed on a nickel
(111) surface have been investigated using density functional theory (DFT) and a classical electrostatic
model. The DFT approach uses periodic boundary conditions, the generalized gradient approximation
and plane wave basis functions. In the classical approach, the molecules are treated as point dipoles
and the metal surfaces are modelled using the image-charge method. The classical and DFT interaction
energies agree well, and the image-charge method can thus be used as a simple description of interac-
tions between molecules and metal surfaces.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Understanding the interaction between a molecule and a metal
surface is important for the study of various adsorption processes
such as heterogeneous catalysis, molecular scattering from sur-
faces, desorption, diffusion and the aggregation and growth of
molecular clusters and monolayers on surfaces. An accurate theo-
retical modelling of these interactions is challenging although a
lot of work has already been done in this field [1–3]. The situation
has changed in recent years because accurate electronic structure
calculation methods have become available, eliminating the need
to use adjustable empirical parameters [1,4]. Less accurate, compu-
tationally cheaper, approaches to deal with the same problem are
semiempirical methods and mixed techniques (QM/MM methods),
which treat the most relevant part of the system at a quantum
mechanical level and the rest at a classical level [5,6].

The qualitative behavior of interaction potentials of molecules
on metal surfaces is well known. The potential at short ranges, near
the energy minimum, is dominated by orbital interactions, i.e. Pau-
li repulsion and covalent bonding, which require a quantum
description. At longer distances, the main contributions come from
electrostatic, induction and dispersion (van der Waals) interac-
tions. The dispersion interactions arise from quantum electrody-
namics, and must be calculated quantum chemically or using
empirical methods [7–9]. In this work, we focus on the non-disper-
sive part of the long-range interactions, which can be treated
approximately with a classical model.

Classically, interactions between metals and charged particles
can be examined using the image-charge method. Furthermore,
general charge distributions can be expanded in multipoles, whose
ll rights reserved.

en).
interactions with metals can be evaluated using corresponding im-
age multipoles. Some studies have used this approach to model
metal or dielectric surfaces interacting with molecules, instead of
employing a deeper microscopic approach [10–13]. As far as we
know, however, the image-charge approach has never been tested
against electronic structure calculations. This is the subject of the
present work.

2. Electronic structure calculations

All electronic structure calculations were performed with the
VASP 4.6 package [14], which uses density functional theory (DFT)
and periodic boundary conditions (PBC). We employed the gener-
alized gradient approximation (GGA) as parameterized by Perdew
et al. [15]. The electronic wave functions were represented as lin-
ear combinations of plane waves, whose cut-off was set to
400 eV (1 eV = 0.1602177 aJ). The core electrons were described
with the projector augmented plane wave (PAW) method. The con-
vergence criterion for the electronic energy was chosen to be
5 � 10�5 eV and spin-unpolarized calculations were performed.
We were interested in the energies of two types of systems: two
molecules in a periodic cell, and a molecule on a Ni(111) surface.
The slabs used to describe the surface were 6 Å thick and contained
four metal layers. Convergence tests were run with five and six lay-
ers to check that the thickness of the metal slab did not affect the
results significantly. The molecules were located on the top of a
nickel atom in all cases, but tests were performed displacing the
molecules along the surface plane. The results turned out to be
independent of the adsorption site.

In computing the potential energy curves, we first relaxed sep-
arately the structures of the surfaces and the molecules in vacuum,
keeping the unit cell parameters fixed and constraining the lowest
layers of the surfaces (half of the total in all the cases) to their bulk
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positions. The structures were considered fully relaxed when the
forces were smaller than 0.01 eV/Å (1 Å = 10�10 m). The mole-
cule–molecule and the molecule–surface systems were con-
structed by keeping these geometries frozen. The interaction
energies were evaluated for different distances between the mole-
cules and the surfaces.

Detailed convergence tests are important, as we are exploring
the long-range distances where the interaction energies are small,
ranging from tens to a few meV. We selected the adsorption sys-
tem with the NH3 molecule situated at a distance of 6 Å over the
Ni(111) surface, embedded in a periodic cell of a = b = 7.5 Å,
c = 18.6 Å, a = b = 90� and c = 60�, as a representative case to check
the convergence. Tests were performed to find the optimal plane
wave cut-off and k-point sampling for a convergence of 1 meV in
the potential energy. We found that a value of 400 meV for the
cut-off energy and a 4 � 4 � 1 C-centered Monkhorst-Pack mesh
(corresponding to 10 irreducible k-points) were adequate for our
calculations. It was also found that the best choice to treat partial
occupancies was a Methfessel-Paxton smearing of order 1 and a
width of 0.1 eV for the relaxations and the tetrahedron method
with Blöchl corrections for the energies. The inclusion of spin
polarization significantly affected the total energies of both the
nickel surface alone and the ammonia–nickel system, but lowered
each almost by the same amount, approximately 2 eV. The interac-
tion energies were decreased by only 2 meV and, therefore, spin-
unpolarized calculations were sufficient for our purposes.

3. The classical electrostatic model

In the classical model, we treat molecules as point dipoles and
metals as ideal conductors, and we calculate their interaction ener-
gies using the image-charge method.

The boundary condition for an electric field at the surface of a
perfect conductor is such that the field must be perpendicular to
the surface and vanish inside the conductor. In the case of a dipole
above an infinitely wide flat metal surface, this boundary condition
can be satisfied by replacing the metal by the mirror image of the
dipole with respect to the surface, with the charges inverted. Above
the surface, the field is identical in the two systems, so the energy
of the dipole in the field above the metal is equal to its energy in
the field of the image dipole.

The DFT calculations were performed in a periodic array con-
sisting of metal sheets with layers of molecules between them.
In a classical electrostatic treatment, however, electric fields can-
not penetrate the metal slabs, and molecules interact only with
the two nearest surfaces and with the other molecules of the same
monolayer. The two metal surfaces can be modelled by an infinite
array of image dipoles as in Fig. 1: each dipole (both real and im-
age) has a mirror image with respect to both surfaces, so the
Fig. 1. Left: DFT model, right: corresponding classical model.
boundary conditions are satisfied. The exact position of the classi-
cal surfaces with respect to the atoms of the DFT model remains an
adjustable parameter.

3.1. Electrostatic interaction energies in a periodic system

The electric field at the point r of a point dipole situated at the
origin is

EdipðrÞ ¼ �
1

4p�0
rl � r

r3 ¼
1

4p�0

3ðl � rÞr
r5 � l

r3

� �
; ð1Þ

where l is the dipole moment and �0 is the vacuum permittivity.
The interaction energy of a point dipole at r0 with an external elec-
tric field E(r) is

Uint ¼ �
1
2

l � Eðr0Þ: ð2Þ

Combining Eqs. (1) and (2), the energy of a dipole l1 in the field
of an other dipole l2 is

Udip—dip ¼
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where r12 is the vector connecting the two dipoles and jr12j = r12.
If l1, l2 and r12 are all aligned, Eq. (3) reduces to

Udip—dip ¼ �
l1l2

4p�0r3
12

: ð4Þ

In our classical model, we have a cubic cell containing N mole-
cules, which is repeated periodically in three directions. All the di-
pole moments have an equal magnitude l and are oriented along
the z axis. The interaction energy of one molecule at r1 = 0 with
the field of the other molecules in this array is
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where rj are the positions of the dipoles in the central cell, zj are their
z components, L is the length of the side of the cell, Ln = L(nx,ny,nz) are
the vectors of the Bravais lattice corresponding to different periodic
cells and the prime means that the term with n = 0, j = 1 is omitted.

The sum in Eq. (5) does not converge absolutely, but it con-
verges conditionally, i.e. it can have a finite value but the value de-
pends on the summation order. A reasonable choice for the order is
to start with the nearest cells and move outward in spherical
shells, because the further away a molecule is, the better it would
be shielded in a more realistic system of molecules with non-zero
volume. However, the sum (5) converges too slowly to be practical.
De Leeuw et al. [16] have evaluated (5) using the convergence fac-
tor e�sjnj2 and performing the integration partly in reciprocal space.
They found for it the expression
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Table 1
Cell parameters: a, b and c are the cell dimensions, c is the angle between a and b (the
other angles are a = b = 90�), and nx, ny and nz give the number of cells contained in
the supercell of the classical model in each direction.

a
(Å)

b
(Å)

c
(Å)

c
(�)

nx ny nz

Cell C1 DFT 15.00 15.00 30.00 90
Classical 15.00 15.00 30.00 90 2 2 1

Cell C2 DFT 7.49 7.49 18.61 60
Classical 7.43 7.57 18.58 60.5 30 34 12
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where erfc is the complementary error function

erfcðxÞ ¼ 2ffiffiffiffi
p
p

Z 1

x
dte�t2

: ð7Þ

The value of the parameter a is chosen so that the first sum over
n can be truncated after the n = 0 term and nmax is chosen so that
the sum converges. The periodic images of the molecule whose en-
ergy is being calculated are excluded from the summation because
interactions with them sum up to zero [16], and the prime means
that the term with n = 0 is omitted in the last sum.

The summation method used requires that the cells are cubic. In
DFT adsorption calculations, cubic cells would make the calcula-
tions heavy, so instead in the classical model we employ cubic
supercells containing several normal cells. We have adopted in
all the classical calculations the experimental gas phase dipole
moment values 1.82 D for hydrogen fluoride, 1.47 D for ammonia
and 1.85 D for water [17] (1 D = 3.33564 � 10�30 Cm).

4. Interaction and adsorption energies

In the DFT model, the interaction energy (per molecule) of two
molecules is calculated as

Uint;DFT ¼
1
2

U2 molecules per cell � U1 molecule per cell: ð8Þ

In the classical model, the total interaction energy is the sum of
individual dipole–dipole interaction energies, and (see Fig. 2) the
equivalent of (8) reduces to

Uint;class ¼ Uinteraction with other molecule and its periodic images: ð9Þ

The adsorption energy on a metal surface is, in the DFT model,

Uads;DFT ¼ Umetalþmolecule � Umetal � Umolecule: ð10Þ

In the classical model, the cell with the molecule and its mirror im-
age has a different height from the initial cell (see Fig. 1). The
adsorption energy is now

Uads;class ¼ Uinteraction with all molecules; new cell

� Uinteraction with own periodic images; initial cell: ð11Þ

d  (Å)

Fig. 3. The interaction energy of two HF or NH3 molecules.
5. Results and discussion

5.1. Two molecules in a periodic arrangement

We first test our classical model with a system consisting of two
periodically repeated polar molecules, instead of a molecule and a
Fig. 2. (a) One molecule (encircled) interacting with its own periodic images. (b)
The encircled molecule interacting with another molecule and the periodic images
of both. (c) The classical equivalent of a PBC DFT interaction energy of two
molecules is the dipole–dipole interaction energy of the encircled molecule with
the other molecule and its periodic images. (d) In the classical model of the
adsorption system, the cell height is different from that in the initial cell.
metal surface. We consider HF molecules in two different cells, C1
and C2, whose parameters are presented in Table 1, and NH3 mol-
ecules in the smaller hexagonal cell, C2.

The DFT and classical interaction energies (Eqs. (8) and (9)) are
presented in Fig. 3. We have also included the classical interaction
energy of two dipoles without periodic boundary conditions (Eq.
(4)).

In all three cases, the DFT and classical PBC energies agree well
at long distances. For the HF molecules, the agreement is good even
at an intermolecular distance of 3 Å, while for the NH3 molecules,
short-range interactions are important up to ca. 5 Å.

The non-PBC model works at short distances (less than �1/4 of
the cell height), but fails to give the right limit at long distances.
Therefore, periodical boundary conditions have to be included in
the classical model, if a sensible comparison with PBC DFT calcula-
tions is required.

5.2. Adsorption on the Ni(111) surface

We have investigated the long distance interactions of HF, NH3

and H2O on the Ni(111) surface in two cells whose lattice param-
eters are presented in Table 2.



Table 2
Cell parameters: Dh is the thickness of the surface, a, b and c are the cell dimensions, c is the angle between a and b (the other angles are 90�), and nx, ny and nz give the number of
cells contained in the supercell of the classical model in each direction.

Dh
(Å)

a
(Å)

b
(Å)

c
(Å)

c
(�)

nx ny nz

Cell C2 DFT 7.49 7.49 18.61 60.0
Classical 2.09 7.54 7.46 16.96 59.7 36 21 16

2.58 7.50 7.50 14.99 60.0 26 15 13
2.76 7.51 7.49 14.27 59.9 19 11 10

Cell C3 DFT 7.49 7.49 28.61 60.0
Classical 1.62 7.52 7.48 38.86 59.9 31 18 6

2.85 7.54 7.46 33.92 59.7 36 21 8
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In the classical calculations, the distance between a molecule
and its mirror image, and thus their interaction energy, depend
on the location of the mirror plane. Furthermore, the distance
between the two opposite mirror planes affects the height of the
periodic cell (Fig. 4). The surface of a metal slab, however, is not
well-defined on a microscopic scale, as can be seen in Fig. 5. In-
stead, the charge density decreases gradually between 1 and 3 Å
above the centers of the topmost atoms.

We have tried several thicknesses for the surface layer, mea-
sured from the centers of the topmost Ni atoms to the mirror plane.
The cell parameters for these systems are presented in Table 2. The
classical and DFT adsorption energies (Eqs. (10) and (11)) are pre-
sented in Fig. 6.

The DFT energies do not agree perfectly with any of the classical
energy curves for distances smaller than ca. 6 Å. The overall shape
of the curves is similar, however, and the long distance limit in the
DFT calculations is predicted well with the classical model using a
surface thickness of ca. 2.5 Å.

All the energy differences between classical and DFT results are
of the order of a few millielectronvolts, which is comparable to the
accuracy of our DFT calculations. The differences could be due to
several things: remaining short-range orbital interaction, change
in the dipole moment or shifting of the surface due to induction
or charge transfer, inaccuracy of the DFT calculations, or simply
the assumption that the metal can be treated as a perfect conduc-
tor with a clear cut surface even at such small scales.

The good agreement at h > 7 Å in the larger cell suggests that
the non-dispersive part of long-range adsorption interactions is
Fig. 4. Depending on where the classical surface is situated compared to the metal
atoms of the DFT model, i.e. what the distance Dh between the topmost atoms and
the mirror plane is, the classical model has a different cell height c and a different
intermolecular distance d.

Fig. 5. Electron density (arbitrary units) of an HF molecule on a Ni(111) surface.

−0.02

 5  6  7  8  9
h  (Å)

DFT
classical, Δh = 1.6 Å
classical, Δh = 2.8 Å

Fig. 6. Adsorption energies of H2O, HF and NH3 molecules on the Ni(111) surface in
the cells C2 and C3 with different classical surface thicknesses Dh.
well approximated by a classical dipole-conductor interaction. In
a real adsorption system with only one metal surface, a simpler
model with periodicity in just two dimensions could then be used
to get the right asymptotic behavior. In that case, the convergence
problem would also be avoided.

6. Conclusions

We have investigated interactions between molecules and metal
surfaces using both DFT and classical models. At short distances,
such interactions must be treated quantum mechanically, but fur-
ther away they are believed to reduce to more simple dispersion
forces and classical Coulomb type interactions. The aim of this con-
tribution is to gain deeper understanding of quantum mechanical
results at long distances, and how well they can be approximated
with non-quantum mechanical approaches. Since the density
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functional theory we have used does not include long-range disper-
sion interactions, we have only compared it with classical electro-
static interactions.

We have assumed, in our classical model, that dipolar mole-
cules can be treated as point dipoles. We have investigated the
validity of this approximation by comparing DFT and classical
dipole–dipole interaction energies in periodic arrays of hydrogen
fluoride molecules and of ammonia molecules. The agreement be-
tween these two approaches turns out to be excellent: for the HF
molecules with a bond length of rHF = 0.94 Å, the classical point
dipole approximation works perfectly even when the distance
between the centers of mass of two molecules is only 3 Å, and also
for the less point-like ammonia molecules it works down to an
intermolecular distance of 5 Å.

The four atom layer thick metal slabs have been treated as ideal
conductors with zero resistivity and a well-defined flat surface. The
interactions between molecules and surfaces have then been stud-
ied using the image-charge method. A significant issue in this ap-
proach is how to define the location of the surface, since the
charge density decreases gradually in a region from the last metal
layer to ca. 3 Å above it. We have calculated classical interaction
potentials for different choices of the height of the classical surface
ranging from 1 to 3 Å above the topmost metal atoms, and com-
pared them with DFT calculations in systems consisting of a
Ni(111) surface and either HF, water or ammonia molecules. None
of the classical curves agree perfectly with DFT results in any of the
systems. At long distances, however, the DFT energies approach
the classical potential with a surface height of ca. 1.5–2 Å. Even
at shorter distances, the differences between classical and DFT re-
sults are usually less than 10 meV. We thus conclude that the com-
parison of classical interaction potentials to ab initio results
provides a way to define the classical surface of a metal at a micro-
scopic scale and, furthermore, once this surface is defined, the
long-range electrostatic interaction between molecules and metals
can be approximated by means of a simple image-charge model.
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