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Two different critical regimes enclosed in the
Bean–Rodbell model and their implications for
the field dependence and universal scaling of the
magnetocaloric effect

C. Romero-Muñiz,*a V. Francob and A. Condeb

In the last few years power laws and universal scaling have been extensively used to study the field

dependence of the magnitudes involved in the magnetocaloric effect of materials. They are key tools

which allow us to compare the performing properties of different materials regardless of their nature,

processing or experimental conditions during measurements. It was proved that power laws and

universal scaling are a direct consequence of critical phenomena in the neighborhood of phase

transitions. However, there remains some controversy about the reliability of these procedures. In this

work we use the well-known Bean–Rodbell model to confirm that these features are unmistakably

related to the critical behavior of the continuous phase transitions. In this specific model, universal scaling

occurs either at a purely mean field second order transition or at a tricritical point. Finally, we analyze in

detail if the universal scaling is compatible with materials at the tricitical point, making a comprehensive

comparison with available experimental data from the literature. We conclude that it is really difficult to

know with full certainty if a sample really is in the tricritical regime.

1 Introduction

The study of magnetocaloric effect (MCE) has attracted a lot
of attention among the scientific and engineering communities
in the last few years. This interest arises not only from its
potential applications in near room temperature refrigeration
but also from other energy conversion matters,1 and there are
convincing arguments to postulate that magnetocaloric materials
will perform a crucial role in the upcoming technologies of the
near future.2

The possibility of building a refrigeration device for near
room temperature based only on the application and removal
of a magnetic field in the presence of a ferromagnetic sub-
stance like gadolinium was firstly proposed by G. V. Brown in
1976.3 This type of device has two main advantages compared
with the rest of the existing refrigeration machines. On the one
hand, since the driving force arises from the variation in the
applied field, the number of energy consuming elements like
power generators, compressors, etc. is drastically minimized
resulting in an increment of the cooling efficiency, especially if

the magnetic fields are produced using permanent magnets.
On the other hand, these devices are very environmentally
friendly because they do not use any gaseous substances in
the refrigeration process which are normally toxic or respon-
sible for the greenhouse effect. Brown’s idea opened the door to
a completely new technology which is now under development
with a remarkably large number of working prototypes.4 The
research on magnetocaloric materials was clearly increased
when giant MCE was discovered in Gd5Si2Ge2 at the end of the
90’s.5 Promptly many other materials with an extraordinary
MCE were found,6–9 still today dozens of new materials with a
giant MCE are described every year. As a result, hundreds of
magnetic materials belonging to different chemical families
have been studied and fully characterized10,11 with valuable
information about the most intimate details of the structural and
magnetic phase transition, often unveiled with the aid of first
principles calculations.12–16 Moreover, a big effort has been put to
improve these applications on refrigeration using other related
phenomena like the electrocaloric or barocaloric effects.17–19

Due to the huge number of known magnetocaloric materials
it was necessary to develop strategies which allow us to com-
pare them in an accurate way regardless of their nature,
processing or composition. For this purpose, some magnitudes
were proposed like the refrigerant capacity which is a measure
of the amount of transferred heat between the cold and hot
reservoirs. Another problem was related to the fact that very
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often it was difficult to directly compare experimental data for
different materials because the applied fields were different
and all the MCE parameters were field-dependent. To overcome
this issue it was proposed that MCE quantities have a field
dependence which can be described by simple power laws.
Firstly it was proven for the peak of the magnetic entropy
change20 and some years later it was extended to most of the
MCE related magnitudes.21 In all cases the exponents of the
power laws were given in terms of the usual critical exponents
typical for each material. Moreover, the possibility of construct-
ing a normalized master curve for magnetic entropy change was
pointed out which brings all curves for different applied fields
onto the same one, which is applicable for materials under-
going a second order phase transition. It was proven that the
collapse onto the master curve was a consequence of critical
phenomena.22 During the last ten years power laws and the
phenomenological curve have been widely used by experimental
MCE researchers and it has been successfully tested in many second
order phase transition materials exhibiting a remarkable MCE. That
includes, among others, transition metal alloy ribbons23,24 and
nanoparticles,25 Heusler alloys,26 rare earth based intermetallic
compounds,27,28 amorphous29,30 and partially crystalline31 alloys
and a wide variety of ceramic materials like manganites,32,33

cobaltites34 and other complex perovskites.35

In spite of all the cited experimental evidence there are
critical voices with respect to the application of power laws and
the master curve to MCE data. In a recent work by A. Smith
et al.,36 based on a series of numerical simulations in the Bean–
Rodbell model,37 they argued that power laws are basically
incorrect and their application to the study of MCE is a mere
misunderstanding. The main foundation of their thesis at this
point is that MCE exponents are not field-independent at all, so
it would be a mistake to consider them constant along any usual
applied field range under experimental conditions. On the other
hand, with respect to the master curve they claimed that the
collapse of different field curves onto the master one is a simple
coincidence due to its inherent peak shape. These discrepancies
between the experimental results and the conclusions extracted
in the frame of the Bean–Rodbell model must be imperatively
clarified. Since there is a copious bibliography – only a minimal
part was mentioned above – which supports the use of power
laws and critical scaling on MCE we lean towards the possibility
that results derived from theoretical models must be in agree-
ment with experimental results. If this is not the case the model
should be questioned.

Thus, the aim of this work is to shed new light on the critical
phenomena involved in the MCE with particular emphasis
on the Bean–Rodbell model. Undoubtedly, the usefulness and
reliability of this model cannot be questioned at present because
it has been extensively used in the last 50 years with many
examples of MCE materials.38–46 The key point of the model
which represents its main advantage is that simply varying a
single parameter (Z) both first and second order magnetic phase
transitions can be treated. However, this parameter is added
under a phenomenological assumption related to a volume
change during the transition. Therefore, it could affect other

a priori unrelated aspects like critical scaling. Therefore, one
must be very cautious when extracting conclusions in the restricted
frame of a single model without comparing with other models or
more appropriately with experimental data, otherwise the obtained
results might not be as general as expected.

For this task we will revisit this well-known and widely used
magnetic model in order to analytically show how two very
different critical regimes are embedded in it depending on the
values of the Z parameter. One is typical of mean field theories
and the other is found in the limiting region between first
and second order phase transitions, which correspond with a
tricritical point, which has different critical exponents. Then, by
means of numerical calculations we will analyze what is the
range of applicability, in terms of the applied field, of the power
laws in the Bean–Rodbell model as a function of this Z parameter,
showing that only for Z - 0 and Z - 1 – that is, at the purely
second order phase transition or at the tricritical point – the
critical behavior is retained at levels comparable with experi-
mental conditions. In addition we will study how the master
curve behaves for the magnetic entropy change in this model
according to different values of Z, concluding that there is an
unambiguous relationship between the collapse of the master
curve and the two different critical regimes observed in the
model. Finally we will describe in detail the nature of the
tricitical point in the Bean–Rodbell model as well as in a wide
selection of materials available in recent literature, which will
allow us to extract some conclusions about the critical behavior
and power laws in this peculiar kind of material.

2 Theory and methods
2.1 Scaling behavior of MCE

Before starting the analysis of the scaling behavior and the
field dependence of some MCE quantities let us remember
that MCE is characterized by the maximum magnetic entropy
change and the adiabatic temperature change. The first quan-
tity is defined by the typical expression involving the Maxwell
relation as:

DSMðT ;HÞ ¼ m0

ðH
0

@M

@T

� �
H0
dH 0: (1)

And the second one is defined as:

DTadðT ;HÞ ¼ �m0
ðH
0

T

cðTÞH0
@M

@T

� �
H0
dH 0 (2)

where c(T)H is the constant field specific heat of the material and
m0 the vacuum permeability. Both quantities are approximately
related near the Curie temperature in the following way:

DTad T � TC;Hð Þ ’ � T

c TCð ÞH0
� DSM T � TC;Hð Þ: (3)

In this work we will focus only on the maximum magnetic
entropy change. Probably the first attempt to describe the field
dependence of the maximum magnetic entropy change was
made over thirty years ago by Oesterreicher and Parker47 who
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showed that �DSM(TC,H) p H2/3 by expanding in a power series
the Brillouin function. This empirical law was widely accepted
among the magnetocaloric community. Later Kuz’min48 added
a small negative term independent of H to the expression
of Osterreicher and Parker, which arose from spatial inhomo-
geneities of real ferromagnetic materials. J. Lyubiuna et al.,49

based on Landau expansions, proposed a more complex depen-
dence (including Kuz’min’s constant term) as:

�DSM(T E TC) = A(H + H0)2/3 � AH0
2/3 + BH4/3 (4)

where A and B are intrinsic material constants and H0 is related
to Kuz’min’s constant term. Similar results were obtained by
using other mean field theories like the Green’s function
formalism developed by P. Álvarez et al.50 In an equivalent
way similar relations were derived for the adiabatic tempera-
ture change.51

Independently of these mean-field approaches, V. Franco et al.20

proposed in 2006 that the field dependence of the magnetic
entropy change near TC is a power law with an exponent n
related to the critical exponents of the material:

n TC;Hð Þ ¼ 1þ b� 1

bþ g
: (5)

Note that n = 2/3 is a particular case of this general expression
when we choose the mean-field exponents b = 1/2 and g = 1.
It was experimentally shown that materials with critical expo-
nents far from the mean-field approach obeyed this power law.
This exponent n can be calculated for all temperatures from the
magnetic entropy change curves and not only at the critical
point using the following expression

nðT ;HÞ ¼ d log DSMðT ;HÞj j
d logH

: (6)

For a given applied field, the behavior of eqn (6) is as follows.
It has a minimum near TC, (exactly at TC for the mean-field
model) whose value is the one pointed out previously depending
on the critical exponents (2/3 in the frame of mean-field theory).
For temperatures well above the Curie point, in the paramagnetic
region, it reaches the value of 2. In contrast, for temperatures
below the phase transition it reaches the value of 1 in the purely
ferromagnetic region.21,52

It was also possible to construct a normalized entropy
change curve that was the same for all values of applied fields,
which was initially called a master curve and eventually a
universal curve. The collapse of all entropy change curves for
different applied fields has been proved to be a consequence of
the critical scaling behavior.22 For magnetic systems near the
critical point, a scaling relation between magnetization, applied
field and temperature must be fulfilled and it has the form:53

H

Md ¼ f tM�1=b
� �

; (7)

where d and b are the critical exponents, t � (T � TC)/TC and f
is a scaling function which differs depending on the model or
the material. For mean-field models this scaling is fulfilled with
d = 3 and b = 1/2. The universal curve has been successfully

proved in several materials exhibiting a second order phase
transition. However, materials with first order phase transi-
tions do not collapse onto a universal curve and this fact can be
used to determine the nature of the phase transition in a given
material.54 In order to construct this phenomenological curve
we first normalize the magnetic entropy change dividing by
the maximum DSM/DSpk

M . Then we choose two temperatures
which must fulfill the following conditions: DSM(Tr1 o TC)/
DSpk

M = DSM(Tr2 4 TC)/DSpk
M = h, where h o 1 is an arbitrary

constant. Although in theory h could be freely selected between
0 and 1, too large a value (reference temperatures chosen too
close to the peak temperature) would produce large numerical
errors due to the limited number of points – in experimental
measurements – which lie in that region. Conversely, if h is
too small it implies selecting reference temperatures far from
the critical region, where other phenomena could take place.
Therefore, values in the range 0.5–0.7 are recommended. Once
the two reference temperatures are found we define a new
variable y for the temperature axis as:

y ¼
� T � TCð Þ= Tr1 � TCð Þ if T � TC

T � TCð Þ= Tr2 � TCð Þ if T 4TC:

(
(8)

The representation of the different DSM(T) curves on the
DSM/DSpk

M and y axis produces the phenomenological universal
curve. It was subsequently proved that the use of two reference
temperatures was not necessary, unless there were multiple
phases in the sample or the demagnetizing factor was not
negligible.21

By construction, this universal curve (with a single reference
temperature) has a certain constrained nature because all
scaled curves pass through two points (0, 1) and (+1, h). In
order to avoid naive interpretations it is necessary to go one
step beyond when determining how good is the collapse of a
group of curves. For y 4 0, corresponding to the paramagnetic
region, no significant deviations are expected. However, for
yo 0, in the purely ferromagnetic region, we do expect a spread
in the universal curve when moving away from the critical point
due to the saturation in the material magnetization. This
is a general feature of the critical scaling of any physical
magnitude: if we depart from the critical region, scaling will
not be fulfilled. This separation can be due to temperature or
due to high magnetic fields which make the materials approach
saturation.55 Measuring this spread by a simple visual inspec-
tion would be a poor criterion and it leads to misconceptions.
For this task it is convenient to define a parameter o(%) which
is a measure of the dispersion of the curves at a certain point of
the re-scaled temperature axis. It is defined for a given y0 by the
following expression

oð%Þ ¼ Wðy0Þ
DSM y0;Hmaxð Þ

.
DSpk

M Hmaxð Þ
� 100; (9)

where W(y0) = DSM(y0,Hmin)/DSpk
M (Hmin) � DSM(y0,Hmax)/DSpk

M

(Hmax) is the vertical spread of all curves at a certain re-scaled
temperature. If the collapse of all curves were perfect, W(y0)
would be zero and hence o(%) = 0. This parameter should not
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be understood as an absolute magnitude but a relative one
which allows us to compare different materials. Also, notice that
this comparison is only valid when the same range of applied
field is used.

2.2 The Bean–Rodbell model

In 1962 Bean and Rodbell proposed a magnetic model to study
the first order transition in the MnAs compound.37,56 It exists
in two distinct crystallographic structures, at low and high
temperatures the hexagonal NiAs structure is found and for
a narrow temperature range, from 313 K to 398 K, the ortho-
rhombic MnP structure prevails.57 The high temperature tran-
sition in the paramagnetic region is of second order. The low
temperature transition is a combined structural and ferro-
paramagnetic transition of first order with a large thermal
hysteresis and a remarkably high change in volume at this
transition of B2.5%.58 From the cited experimental evidence
they suggested that the dependence of the exchange interaction
was strongly related to the inter-atomic spacing. This depen-
dence was phenomenologically considered via the dependence
of the critical temperature TC on the volume change in the
following way:

TC ¼ T0 1þ b
v� v0

v0

� �
; (10)

where (v � v0)/v0 is the cell deformation, b measures the slope
of the critical temperature curve on the cell, and T0 is the
magnetic ordering temperature in the absence of deformations.
Then they considered the expression for the Gibbs free energy
per unit volume of a ferromagnetic system, with an arbitrary
angular momentum quantum number J, in the frame of the
molecular field approximation:

Gv ¼ � m0HMss�
3

2

J

J þ 1
NkBTCs2

þ P
v� v0

v0
þ 1

2K

v� v0

v0

� �2
�TSv;

(11)

where the first term on the right arises from the applied field H;
the second is the exchange term; the third, distortion; the
fourth comes from the external pressure P; and the last is the
entropy term. Here, N is the density of dipoles per unit volume,
kB is the Boltzmann constant, m0 is the vacuum permeability, K
is the compressibility, T is the absolute temperature, Sv is
the entropy per unit volume and s = M/Ms is the normalized
magnetization, where Ms is the saturation magnetization at 0 K
which is given by Ms = NgmBJ, with mB being the Bohr magneton
and g the Landé factor. From now on we will neglect the pressure
term and all entropy terms except the magnetic contribution.
The volume change that minimizes the Gibbs free energy
satisfies the following condition:

v� v0

v0
¼ 3

2

J

J þ 1
NkBT0Kbs2 (12)

obtained after substituting TC in (11) for its expression in (10)
and deriving Gv with respect to (v � v0)/v0. Now we can
introduce the latter result of (12) in (11) and derive again in

order to minimize the Gibbs free energy, this time with respect
to s. When setting the derivative to zero we obtain the following
equation of state:

�@Sv

@s
¼ gm0mBJH

kBT
þ 3J

J þ 1

T0

T
s

þ 9

10

J 2J2 þ 2J þ 1
� 	
ðJ þ 1Þ3

T0

T
Zs3

(13)

where Z is a parameter given by:

Z ¼ 5JðJ þ 1Þ
2J2 þ 2J þ 1

NkBT0Kb2: (14)

Bean and Rodbell proved that in this model this parameter
governs the nature of the magnetic phase transition. In the
absence of external pressure, for 0 r Z o 1, the transition is of
second order type, while for Z 4 1, the transition is purely of
first order type. This fact is illustrated in Fig. 1, where magne-
tization under zero field vs. temperature curves for gadolinium
are shown for different values of the Z parameter. If we want to
convert eqn (13) into one with a more friendly appearance we
must introduce an analytical form of the magnetic entropy.
Since we want to perform a derivative with respect to s, a very
convenient way to express it showing its explicit dependence
is as follows:

SvðsÞ
NkB

¼ log

sinh
2J þ 1

2J
BJ
�1ðsÞ

� �

sinh
1

2J
BJ
�1ðsÞ

� � � sBJ
�1ðsÞ (15)

where BJ
�1(s) is the inverse Brillouin function. After some

algebraic manipulations it is easy to conclude that:

@Sv

@s
¼ �NkBBJ

�1ðsÞ; (16)

Fig. 1 Magnetization curves calculated for gadolinium using the Bean–
Rodbell model for H = 0 for different values of Z parameter. For Zo 1 (solid
lines) we find a continuous curve because the phase transition is of second
order type. However for Z 4 1 (dashed lines) a discontinuity typical of first
order phase transition appears and the Curie temperature is shifted
to higher values.
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and hence eqn (13) becomes:

s ¼ BJ
gm0mBJH

kBT
þ 3J

J þ 1

T0

T
s

�

þ 9

10

J 2J2 þ 2J þ 1
� 	
ðJ þ 1Þ3

T0

T
Zs3
�
:

(17)

Notice that in this model if Z = 0 we recover the well-known
expression obtained by Weiss.59 So, this model is equivalent to
considering an extra term in the Weiss’ molecular field. Instead
of having Heff = H + lM, now we would have Heff = H + lM + l3M3,
where l is a phenomenological constant related to the transi-
tion temperature as

1

l
¼ Nm0 gmBð Þ2

3kBTC
JðJ þ 1Þ; (18)

and l3 is another constant which takes into account the
contributions arising from the change in volume and deter-
mine the nature (first or second order) of the phase transition.
These two parameters, l3 and Z, are related to each other in the
following way:

Z ¼ 10

3

J2ðJ þ 1Þ2
2J2 þ 2J þ 1

l3
l

NgmBð Þ2: (19)

Finally, using these new parameters l and l3, eqn (17) can be
rewritten in a more compact form as:

M

Ms
¼ BJ

m0gmBJ
kBT

H þ lM þ l3M3
� 	� �

¼ BJðxÞ: (20)

According to this model the magnetic entropy per mole (using
the gas constant R) can be easily calculated using the following
analytical expression:

SðT ;H;MÞ
R

¼ log

sinh
2J þ 1

2J
x

� �

sinh
1

2J
x

� � � xBJðxÞ: (21)

Hence the magnetic entropy change due to the variation of the
applied field is given by DSM = SM(T,H) � SM(T,0). As we have
seen, the Bean–Rodbell model provides a disarmingly simple
way to reproduce the magnetothermal response of different
materials by choosing the appropriate parameters after some
empirical inputs. Accordingly, it has been already used to study the
MCE of many materials, especially intermetallic compounds38–41

but also other materials like manganites42,45,46 that we will
consider later. However, the intrinsic limitations of this model
should not be forgotten. Among them, we should be aware
that it is a mean-field approximation, so it does not provide
information about the real critical exponents of the material. It
does not take into account possible couplings between the
magnetic contribution to the entropy with its electronic or
vibrational counterparts, which sometimes cannot be neglected.
And finally, it does not take into account phenomena like the
influence of the crystalline electrical field or the magnetic
anisotropy.

In this work the magnetic entropy change was calculated
using this analytical expression and we have also compared it

with the results obtained by differentiating and integrating
values of M(T,H) using eqn (1), as is often performed with
experimental data. For Z r 1, we found that discrepancies
between both methods are negligible. However, for Z 4 1, the
discontinuity in [qM/qT]H in the neighborhood of the critical
point provokes a non-negligible difference at TC. Therefore, in
this last case, eqn (21) must be exclusively used. Throughout
this work all simulations were carried out using gadolinium as
an archetypical work material with TC = 293 K, r = 7.90 g cm�3,
Ms = 1963 kA m�1, J = 7/2, and g = 2.60 The Z parameter is varied
in the range 0 r Z r 2 keeping all other parameters constant.
Notice that although we have chosen gadolinium as a work
material this fact does not represent any serious drawback or
lack of generality. By tuning the parameters l and l3 it would be
possible to reproduce the magnetothermal response of a wide
selection of materials as it has been previously shown in the
literature.38–46

3 Results and discussion
3.1 Two critical regimes

In this section we will show how it is possible to find two clearly
different critical regimes in the Bean–Rodbell model depending
on the value of the Z parameter. If we keep close enough to the
phase transition we will see that for Z - 0 we have the typical
mean field critical behavior. However, for Z - 1, where the
limit between the first and the second order phase transitions
is found, another regime with the characteristic critical expo-
nents of the tricritical point appears. We start from eqn (20)

m0mBgJ
kBT

H þ lM þ l3M3
� 	

¼ BJ
�1 M

Ms

� �
: (22)

Note that although it would be the same to deal with the
Brillouin function itself instead of its inverse, from a practical
point of view it is more convenient to use the inverse function.
In the limit of M - 0 we can expand in a power series the
function BJ

�1(x) as61

BJ
�1ðxÞ ’ 3J

J þ 1
xþ

9J 2J2 þ 2J þ 1
� 	
10ðJ þ 1Þ3 x3

þ
27J 88J4 þ 176J3 þ 196J2 þ 108J þ 27

� 	
1400ðJ þ 1Þ5 x5:

(23)

For this calculation it is necessary to retain up to the cubic
term. Now substituting the power expansion into (22) and
reordering all terms we arrive at the following expression:

H

M3
¼ lt

M2
þ l

3

10

T

TC

2J2 þ 2J þ 1

ðJ þ 1Þ2
1

Ms
2
� l3: (24)

At this point the scaling relation given in (7) is almost fulfilled
but in the second term we have the ratio T/TC. However, we can
considerer that in the proximity of the transition T/TC E 1 so
this dependence is very weak compared to the first term in
which we find t. So we can express the equation of state in the
form of eqn (7) with b = 1/2 and d = 3, as it corresponds with the
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mean field approximation. Besides, we can express l3 in terms
of the Z parameter using eqn (19) and we obtain the following
expression:

H

M3
¼ lt

M2
þ l

3

10

2J2 þ 2J þ 1

ðJ þ 1Þ2
1� Z
Ms

2
: (25)

In this expression we recognize that in the Bean–Rodbell model
the scaling function is simply f (x) = x + c, with c being a
constant. In this limit we can study the dependence of the
magnetic entropy change as a function of the applied field. We
are interested in the dependency at T = TC so we can calculate the
partial derivative evaluated at the transition temperature. It is:

@M

@T

� �
H;T¼TC

¼ � l
3TCCMFð1� ZÞM

�1

¼ l
3TC

H�1=3

CMFð1� ZÞ½ �2=3
;

(26)

where CMF = 3l(2J2 + 2J + 1)/[10(J + 1)2Ms
2]. And finally if we

integrate this expression with respect to the applied field we
obtain the change in the magnetic entropy

DSM TC;Hð Þ ¼ �m0l
2TC

H

CMFð1� ZÞ

� �2=3
: (27)

Notice that this expression satisfies the condition of
�DSM(TC,H) p H2/3 obtained by Oesterreicher and Parker thirty
years ago.47 It is also in agreement with the expression previously
obtained by J. H. Belo, et al.62 for the Bean–Rodbell model with
Z = 0. In our case an extra factor 1� Z appears in the denominator.
They showed experimentally that �DSM(TC,H) p (H/TC)2/3. In our
case the ratio l/TC does not depend on the critical temperature
and CMF p TC so we obtain the same behavior for Z a 0.

Nevertheless, one must be careful when applying this result
in the data analysis. First of all, it must not be forgotten that
this behavior is only valid in the limit T - TC and M - 0. This
means that only for low enough applied fields and in the
appropriate range of temperature it is possible to use this
approximation. Otherwise we will find significant deviation
from this power law behavior. In this general expression we
have an additional 1 � Z factor in the denominator which
implies that in the limit Z - 1, when the transition changes
from second to first order type, we find a divergence and the
obtained expression is not valid anymore. To avoid this diver-
gence it is necessary to expand the inverse Brillouin function up
to the fifth order. This is because for Z = 1 the M3 term vanishes
and hence the partial derivative of the magnetization goes
to infinity. In order to obtain the scaling relation in the limit
of Z - 1 we proceed in the same way as before and the new
equation of state becomes:

H

M5
¼ lt

M4
þ
9l 88J4 þ 176J3 þ 196J2 þ 108J þ 27
� 	

1400ðJ þ 1Þ4Ms
4

: (28)

This is the equivalent expression for Z - 1 as the one derived
before in eqn (24) for Z a 1. But now we find the characteristic
behavior of a tricritical point with critical exponents d = 5, g = 1
and b = 1/463 which are different from those of mean field theory.

In this case the partial derivative of magnetization with respect
to temperature in a constant field evaluated at TC becomes:

@M

@T

� �
H;T¼TC

¼ � l
5CTCPTC

M�3 ¼ l
5TC

H�3=5

CTCP
2=5
; (29)

where CTCP = 9l(88J4 + 176J3 + 196J2 + 108J + 27)/[1400( J + 1)4Ms
4]

is another constant. Substituting this expression the magnetic
entropy change becomes:

DSM TC;Hð Þ ¼ �m0l
2TC

H

CTCP

� �2=5

: (30)

This result is in agreement with the general form of the
exponent n given in eqn (5) when the critical exponents of the
tricritical point are used.

3.2 Influence of g on the scaling behavior

In the previous section we have derived the critical behavior of
the Bean–Rodbell model. In principle, the field dependence
of the maximum magnetic entropy change will be given by
eqn (27) and (30) for Z a 1 and Z - 1 respectively. However,
those relations are restricted to the limiting case of T - TC. In other
words, although this behavior is ensured in the neighborhood
of the phase transition, a priori we have no idea about the range
of validity of those expressions. Of course, we know that for a
high enough applied field the critical behavior is lost due to the
saturation of the sample magnetization. In order to elucidate
this point there is a straightforward way which consists of
comparing the results obtained with the power law predictions
and the value obtained directly with the model.55

In Fig. 2 we have represented the field dependence of the
magnetic entropy change peak for different values of the Z
parameter. In each case two vertical lines indicate the applied
field values in which the value of DSpk

M calculated using the
power laws differs by 5% or 8% with respect to the real one
obtained with the model. As we previously pointed out, we use
the magnetic parameters of gadolinium for all Z values including
both the first and second order phase transitions. According
to the graphics in Fig. 2, for Z = 0, it is possible to use the
power laws up to applied fields of B10 T as we previously
demonstrated.55 However, for non-zero values of Z the range of
applicability of the power laws progressively becomes narrower.
We see how for Z4 0.2 even for applied fields lower than 1 T the
power laws expressions are not valid anymore, being practically
inapplicable for Z = 0.8–0.9. An explanation for this fact arises
from the addition of the extra term l3M3 in eqn (22). This
positive term contributes to an increase in the magnetization
under the same conditions of temperature and applied field, as
is shown in Fig. 1. The power series expansion of the inverse
Brillouin function of eqn (23) is based on the assumption that s
remains small enough near the phase transition. To be more
precise, in the case of gadolinium, with J = 7/2 for s = 0.4, the
error in the inverse Brillouin function remains under 1% which
is reasonable but for s = 0.6 the error grows over 5%. Hence, the
addition of the phenomenological term of l3 is responsible for
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the lack of scaling behavior when 0 o Zo 1. As is shown in the
graphics of Fig. 2 this lack of scaling behavior occurs gradually.
However, for Z = 1, the critical scaling behavior is suddenly
recovered because it corresponds to the tricritical point
governed by eqn (30). Again the range of applicability is around
10 T, which is a broad enough interval. Notice that in this case
eqn (27) cannot be used because the cubic term in the power
expansion vanishes so only the comparison with eqn (30) is
available. The reason why the power law does work for Z = 1 is
simple. In this case the second right hand term (arising from
the cubic term of the power expansion) of eqn (25) vanishes.
So it is necessary to consider the fifth order term of the power
expansion. Hence the accuracy of the approximation by the
power expansion series increases, although the values of s
were not so small. But this is a peculiarity of the surroundings
of Z = 1 and is fulfilled only in a very narrow range around it.
Otherwise the cubic term will dominate and the fifth order term
will be negligible as is shown for Z = 0.9. Finally, for Z 4 1 the
lack of universality is total. There is not any coincidence between
any of the two power laws even in the low field region. Although
eqn (27) should be valid for Z 4 1, the shift of the critical point
to higher temperatures makes that s values remain close to
1 even exactly at TC, as is shown in the magnetization curves of
Fig. 1. Therefore, no critical scaling is observed for first order
phase transition materials. This is in clear agreement with
recent experimental results on MnFe(P,Si) alloys.64

Now, we analyze in detail the field dependence of the
exponent n at TC obtained through eqn (6). Note that this
expression gives the so-called local exponent. It is often not
possible to use this formula when dealing with experimental
data because the resolution in applied field is not sufficient. In

that case the exponent n can be obtained by performing a linear
fitting in the logarithmic scale of DSpk

M vs. H dataset. The
exponent determined in this way will have a similar behavior
to that of the local exponent. In Fig. 3, we have plotted the
variation of the local exponent n with respect to the applied
field for different values of Z. We have chosen an extremely
wide range of the applied field (up to 1000 T) to demonstrate
that for high enough applied fields the local exponent tends to
zero for all values of Z. This is obviously a consequence of
achieving the total saturation on the magnetization in the
material. For a high enough applied field, an increment in its
magnitude is unable to decrease more the magnetic entropy

Fig. 2 Field dependence of the magnetic entropy change peak for different values of the Z parameter. In each case the maximum value obtained with
the Bean–Rodbell model is compared with the ideal power laws derived in eqn (27) (black dashed line) for the mean field and (30) (blue dashed line) the
tricritical point. When possible two vertical lines indicate the applied field values in which the difference between the power law prediction and the real
value of the magnetic entropy change peak is 5% and 8%. Note that only for Z- 0 and Z- 1, the agreement is very good until applied fields of several T.

Fig. 3 Field dependence of exponent n in gadolinium for different values
of Z parameter between 0 and 1. Note that in all cases for high enough
applied fields they approximate to zero where a complete saturation
regime is reached. However, in the inset, we show how for Z = 0
and Z = 1 we find that its values of 2/3 and 2/5 are preserved in the range
of 1–10 T which corresponds with the usual working conditions. For higher
values these power laws are not valid even for materials with critical point
near room temperature.
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because all dipoles are completely parallel to the applied field
and hence the theoretical maximum of R log(2J + 1) is reached.
However, if we focus on more realistic applied ranges where
power laws are supposed to be valid, we find those values
predicted by eqn (5). In the inset of Fig. 3 we show the field
dependence of the exponent n in a more restricted applied field
range. We see how for Z = 0, n E 0.66 and for Z = 1, n E 0.4
along the applied fields of 0–10 T where we show that power
laws are valid. Alternatively, for other values of Z we appreciate
a stronger field dependence and it is not possible to assign a
reasonable constant (i.e. slowly varying) value of n for this
applied field range. This is in complete agreement with the
results shown in Fig. 2 where we pointed out that power
laws were not valid for those values of Z. In a recent work36

this lack of scaling for Z o 1 was interpreted as a proof of the
lack of scaling for second-order phase transition materials. Our
point of view is completely different. The exponent n is a true
scaling parameter independent of the applied field but only
in those conditions in which a critical behavior does exist.
According to the results of this section we must distinguish
between four different scaling regimes; (i) when Z- 0, a typical
mean-field scaling with n = 2/3 is observed according to
eqn (27); (ii) for 0 o Z o 1, the addition of the phenomen-
ological term l3M3 to the model provokes an increment of the
magnetization near the transition temperature and therefore
the range of applicability of power laws progressively shifts to
lower values of applied fields, making them practically useless;
(iii) when Z - 1, we find the main features of a tricritical point
which separates first from second order phase transition behaviors
but magnetization it still continuous with respect to temperature.
This tricritical point corresponds to a distinct critical regime
with a characteristic exponent n = 2/5 given by eqn (30) and with
a range of applicability of power laws in the range of 1–10 T,
similar to the one for Z - 0; and (iv) for Z 4 1, a first order
phase transition takes place and eqn (27) is not valid anymore
and no scaling behavior is observed at all.

3.3 Universal curve in the Bean–Rodbell model

Now we focus our attention on the study of the MCE universal
curve behavior with respect to the Z parameter. For this task we
construct the normalized entropy change curves following the
procedure described in Section 2.1 with a single reference in
temperature for different values of Z. We chose values in the
range 0–1.2 in the same way as we did in the previous section.
In Fig. 4 we have presented the universal curves of the MCE
calculated using the Bean–Rodbell model. In each case we have
groups of ten curves corresponding to applied fields between
0.5 and 5 T. Before starting the analysis of these results it
is convenient to clarify some aspects of this universal curve
in order to avoid misconceptions. Once the temperature is
normalized according to eqn (8) we can distinguish between
the paramagnetic y4 0 and ferromagnetic yo 0 regions. In all
cases we would expect a perfect collapse in the paramagnetic
region where non-ferromagnetic behavior is observed in all
cases with independence of Z. However, for y o 0, we expect
that curves do not collapse when moving far away from the

transition temperature and for very high applied fields. This
spread of the curves in the ferromagnetic region could be used
to quantify the degree of superposition with the aid of the
dispersion given in eqn (9), although we will later show that the
ferromagnetic region is not the most appropriate for judging
the quality of the collapse of the curves associated with the
order of the phase transition. This spread depends on several
factors, mainly the normalized temperature. Thus, the disper-
sion o(%) is defined for a given y, but it also depends on the
applied field and the inhomogeneities, impurities and coexist-
ing phases on the sample. In our case we do not have to worry
about the latter factors but it is very important to compare
dispersions in groups of curves ranging in the same values of
applied fields. It is obvious that for higher applied fields the
dispersion will grow. By a simple visual inspection of graphics
in Fig. 4 we appreciate how the dispersion in the ferromagnetic
region for Z = 0 is small and it starts to grow with increasing
values of Z. For Z = 0.2, a remarkable worsening of the collapse
is observed with respect to the Z = 0 case. This worsening is
enhanced until Z = 0.8 where it seems to decrease compared
with the Z = 0.6 case. For Z = 0.9, the coincidence of the curves
continues improving and in fact it looks better than the Z = 0
case because we are getting close to the tricritical point. For
Z = 1, the dispersions in the ferromagnetic region abruptly
disappears. Therefore two minima of dispersion (in absolute
values) are found in the neighborhood of the Z - 0 and Z - 1
points. These points correspond exactly with those described in
the previous section in which power laws and critical scaling
were valid in the range of 1–10 T. For 0 o Z o 1, where the
scaling behavior and the applicability of power laws fails even
for very low fields, the collapse of the magnetic entropy change
curves onto the universal one is far from being acceptable.
Finally, for Z 4 1, where a first order phase transition takes
place, we observe characteristic features like the discontinuity
near the phase transition and how the peak becomes sharper.
However, for Z values larger than 1 but close enough we
appreciate a remarkable collapse of the curves. For instance,
the superposition of curves in the case of Z = 1.1 is much more
evident than in the case of Z = 0.9. Also, note how the ordering
of different normalized curves changed from Z o 1 to Z 4 1.
This order inversion provokes that for values of Z slightly above
1, a significant collapse of the curves is observed despite
belonging to the first order phase transition region. Of course
for higher values of Z the breakdown of the universal curve is
evident, as expected.

To give a more quantitative description of the behavior
explained before we have calculated the dispersion given in
eqn (9) which measures the deviation of the different curves
from the ideal behavior of the universal curve for several values
of Z in the range 0–1.2. Its dependence with respect Z is
presented in Fig. 5. We have calculated the dispersion in two
different values of y0 in the ferromagnetic region (�2 and �5)
and for y0 = +2 in the paramagnetic region. In both ferro-
magnetic cases the general tendency is the same. Although for
Z = 0 the dispersion value is acceptable, for Z 4 0 it grows
significantly until it reaches again a small value for Z = 1.
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A change in its sign is found for values slightly above 1 and
hence very small values of dispersion are obtained, but this is
something artificial and does not have a particular physical
meaning. Again for Z well above 1 it increases rapidly moving

away from acceptable values. On the other hand, for y0 = +2,
we obtain complementary information. For Z o 1, the lack of
universal behavior is caused by the magnetic saturation of the
sample. This saturation does not take place for the same field
values for y0 4 0, therefore small values of o are displayed and
good overlapping of the curves is observed. As we have shown
the increase of Z enhances the worsening of universal behavior.
However, for Z 4 1, we do not expect universal scaling at all.
The green curve in Fig. 5 clearly reveals how there are no
deviations in the paramagnetic region for Z o 1, but we find
remarkable deviations for Z 4 1 which, of course, are not
attributable to the sample saturation but to the inherent behavior
of a first-order phase transition. So, by investigating the lack of
universal behavior in both regions, ferromagnetic (y o 0) and
paramagnetic (y 4 0), we must distinguish between deviations
arising from the working conditions of temperature and applied
fields, which are going to appear solely in the ferromagnetic
regime of second-order phase transition materials55 and those

Fig. 4 Normalized magnetic entropy change curves for different values of Z parameter. Note how only for Z - 0 and Z - 1 the dispersion of the curve
in the ferromagnetic region (y o 0) is small, while for all other cases the collapse is far from being acceptable.

Fig. 5 Variation of the dispersion in the universal magnetic entropy change
curves as a function of the Z parameter for three different values of y0.
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deviations arising from the nature of the phase transitions
which can take place even in the paramagnetic region.

Some years ago it was proposed that the collapse onto the
universal curve could serve as a criterion to distinguish the
nature of the magnetic phase transition.54 According to our
results in the frame of the Bean–Rodbell model this still
remains true in the vast majority of cases, but we have to be
aware of some limiting examples in which materials under-
going first order phase transitions are close to a continuous
phase transition and therefore they exhibit some features of
second order phase transitions. This fact was already pointed
out in samples of MnFeP1�xAsx.65 More recently, G. F. Wang
et al. carried out a careful study in another similar compound
Mn2�xFexP0.6Si0.25Ge0.15 with x = 0.7, 0.8, 0.9 and 1.0.66,67 The
latter case is especially significant. Although the nature of
transition in this compound is definitely first order due to
the observation of thermal hysteresis and according to the well-
established Banerjee criterion,68 samples with x = 0.9 and 1.0
apparently undergo a first order phase transition, while for
x = 0.7 and 0.8 samples undergo a second order type. In such a
peculiar case like this, it is very difficult to determine only by
means of magnetic measurements the nature of the phase
transition. When they applied the universal scaling criterion
in this case they obtained similar results. For x = 0.7, they found
a minimal spread in the ferromagnetic region comparable to
experimental errors and in the other samples the dispersion in
the ferromagnetic region was more appreciable. Therefore, in
these cases a simple visual inspection of the universal curve
does not provide conclusive information about the nature of
the phase transition. However, in most of the cases the collapse
onto the universal curve implies a second order phase transi-
tion and in all cases its absence is a fingerprint of first order
type due to the fact that the system states are historically
dependent on the external magnetic field and temperature as
a consequence of hysteresis.

3.4 Comparison with available experimental data

In the previous sections we have shown the relevance of the
tricritical point in the Bean–Rodbell model and how it displays
a distinct scaling behavior with critical exponents of b = 1/4 and
g = 1. At this point it is convenient to compare the results
obtained in the model with real data. In principle, it seems
difficult to find materials in such a peculiar state between the
first and second order phase transitions. Normally one material
belong to only one of the two kinds of phase transitions.
However, in some materials it is possible to tune the nature
of the phase transitions by carefully changing the composition
of the compound. A paradigmatic example of this phenomenon
is found in rare earth manganites. They are a very extensive
family of inorganic materials constituted by complex manganese
oxides of general chemical formula R1�xMxMnO3, where R is a
trivalent rare earth element and M is a divalent alkaline ion.
In the paramagnetic region they have a cubic perovskite-like
crystal structure with MnO6 octahedra in the corners of the unit
cell and R cations in the center. By partially substituting this
central rare earth cation it is possible to tailor the magnetic

properties of the material including the kind of phase transition.
The magnetocaloric properties of some of these manganites
are excellent and dozens of these compounds have been fully
characterized.86 With careful experimental control of the syn-
thesis it is possible to determine with a certain accuracy the
composition in which the compound is in the limit separating a
continuous from a discontinuous phase transition. Probably
the first successful attempt to describe this crossover phase
transition by means of magnetic and specific heat measure-
ments was made in 200269 in the La1�xCaxMnO3 manganite.
At that time the order of the phase transition in that compound
was unclear, so starting from some limited experimental evi-
dence some experiments were carried out concluding that for
x o 0.4 the compound exhibits a first order phase transition
while for x = 0.4 the transition showed that it does not diverge,
as expected in a second order, and furthermore the critical
exponents are in very good agreement with those of the tricritical
point. Nowadays more examples of manganites exhibiting
similar behaviors have been found. In Table 1 we have listed
a wide selection of magnatocaloric materials which are candi-
dates to be very near to the tricritical point. To find out if a
given sample is in the neighborhood of a tricritical point,
critical exponents can be used as a fingerprint of this condition.
Therefore, in Table 1, we presented the Curie temperature
together with the values of b and g. These critical exponents
are obtained experimentally from the modified Arrott plots
(MAP)87 or using the Kouvel–Fisher method (KF).88 Both meth-
ods are well established and are widely used but they can lead
to significantly different results; for this reason, the method is
specified in each case. At a glance, Table 1 shows some relevant
aspects which must be taken into account. For example, if we
focus on the La0.6Ca0.4MnO3 compound cited before, we see that
it has been characterized several times and using different
methods. Depending on these circumstances the obtained
values of critical exponents can be significantly different. The
uncertainties associated with using the MAP or KF in the same
sample are around 10%. Moreover, the range of the applied field
used to determine the critical exponents can affect the obtained
values,74,81 and the determination of the critical temperature
suffers from some uncertainty. This fact indicates that synthesis
and processing of samples play a crucial role in their magnetic
properties. Therefore these measurements have a limited repro-
ducibility due to several factors like the presence of impurities,
minority phases, demagnetizing factors, problems controlling
and determining the exact composition, etc.

In Table 1 we present more than a dozen of similar materials
which are potential candidates to be near a tricritical point
because their critical exponents are close to those values
predicted by the theory. However, due to the serious issues
mentioned it is practically impossible to ensure with enough
certainty if they are indeed exactly at the tricritical point.
According to our own results in the Bean–Rodbell model, the
tricritical point is located in a very ‘‘sharp’’ region, in our case,
for Z values very close to 1. This means that minimal alterations
in composition or the amount of impurities lead to different
behaviors. As an example, in Table 1, we find measurements
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made by different groups in the compound Nd1�xSrxMnO3 for
x = 0.3 and 0.33. Such a slight variation in composition produces
results with differences around 10% in Curie temperature and
critical exponents. Moreover, the processing of the sample
dramatically affects its properties as is shown in the single
crystal sample of Nd1�xSrxMnO3, whose tricritical behaviour
fully disappears in contrast with its polycrystalline counterpart.
For these reasons, when the universal scaling has been applied
to this kind of material, results have not been conclusive. In
some cases the values of the n exponent at TC obtained from the
fitting of DSpk

M as a function of the applied field differs drastically
from the 0.4 value predicted by the theory. Also the field
dependence of the local n exponent is much more pronounced
than usual. Although this local exponent is very difficult to
determine in an accurate way from experimental data, these
results suggest that the presence of a tricritical point could also
depend on the magnitude of the applied field. Conversely,
in other cases the agreement is acceptable. Similar results are
obtained when trying to construct the universal curve for the
magnetic entropy change. However, a very recent work by T.-L.
Phan and coworkers74 sheds new light on this analysis. They
prepared polycrystalline samples of La0.7Ca0.3�xBaxMnO3 with
0 r x r 0.1 by a solid-state reaction. By means of several
experimental techniques they were able to determine that for
x o 0.05 the phase transition was of first order in the whole
range of the applied field studied; for 0.05 r x r 0.075 the
phase transition exhibits a mix of characteristics of both trans-
formations being very close to the tricritical point, especially in
the high field region. Finally for x 4 0.075 the phase transition

becomes purely second order. Although it would be tricky to
determine the nature of the phase transition by only using the
universal scaling in such a complex case, when they con-
structed the universal curves they noticed that in the samples
belonging to the first order class the deviations in the ferro-
magnetic part of the universal curves were non-negligible,
especially in the parent sample of La0.7Ca0.3MnO3.89 For
samples with purely second order phase transition a perfect
collapse was reported and the same for the samples near the
tricritical point although in the latter case the magnetic
entropy change peak was sharper. Therefore, it is clear that
the applicability of the criterion for determining the order of
the phase transition based on scaling to materials in the
vicinity of a tricritical point is feasible, but only when the
high quality of the experiments allows it. In this case the field
dependence of the exponent n at TC is weak and its value is
close to 0.4. A similar behavior in the universal curve has been
observed in nanocrystals of La0.7Ca0.25Ba0.05MnO3.90

4 Conclusions

In this work we have demonstrated analytically that the Bean–
Rodbell model accurately reproduces two different critical regimes
of continuous phase transitions: a mean field second order and a
tricritical point, as well as a first order phase transition. For the
continuous cases, a power-law field dependence of the magnetic
entropy change peak is found, with exponents n = 2/3 and n = 2/5
for the mean field second order phase and the tricritical point,

Table 1 Critical parameters of some representative compounds exhibiting possible tricritical behavior. The method column indicates the experimental
procedure to obtain critical exponents using a modified Arrott plot (MAP) or the Kouvel–Fisher method (KF)

Compound Sample Space group Method TC (K) b g Ref.

Tricritical mean field — — 0.25 1.00
La0.6Ca0.4MnO3 Polycrystalline Pnma MAP 265 0.25 � 0.03 1.03 � 0.05 69

Polycrystalline Pnma MAP 249 0.249 � 0.002 1.01 � 0.02 70
Polycrystalline Pnma MAP 268 0.248 0.995 71
Polycrystalline Pnma KF 268 0.287 0.989 71

La0.7Ca0.2Sr0.1MnO3 Single crystal Pnma - R%3ca KF 289 0.26 � 0.01 1.06 � 0.02 72
La0.5Ca0.3Ag0.2MnO3 Polycrystalline Pnma MAP 262 0.288 � 0.002 0.948 � 0.008 73

Polycrystalline Pnma KF 262 0.287 � 0.002 0.985 � 0.002 73
La0.7Ca0.25Ba0.05MnO3 Polycrystalline Pnma MAP 263 0.225 � 0.002 1.05 � 0.03 74
La0.7Ca0.225Ba0.075MnO3 Polycrystalline Pnma MAP 258 0.216 � 0.005 0.97 � 0.07 74
La0.5Ca0.4Li0.1MnO3 Polycrystalline Pnma MAP 250 0.254 � 0.001 0.99 � 0.02 75 and 76

Polycrystalline Pnma KF 250 0.255 � 0.001 0.987 � 0.006 75 and 76
La0.7Ca0.3Mn0.91Ni0.09O3 Polycrystalline Pnma MAP 199 0.171 � 0.006 0.98 � 0.01 77
La0.7Ca0.3Mn0.88Ni0.12O3 Polycrystalline Pnma MAP 184 0.262 � 0.005 0.98 � 0.01 78
La0.1Nd0.6Sr0.3MnO3 Polycrystalline Pmmmb MAP/KFc 249 0.257 � 0.005 1.12 � 0.03 79
La0.67Pb0.33Mn0.94Co0.06O3 Polycrystalline R%3c MAP 324 0.261 � 0.004 1.05 � 0.02 80

Polycrystalline R%3c KF 324 0.255 � 0.002 1.07 � 0.06 80
La0.67Pb0.33Mn0.97Co0.03O3 Polycrystalline R%3c MAP 345 0.233 � 0.002 1.06 � 0.06 80

Polycrystalline R%3c KF 345 0.237 � 0.002 1.03 � 0.05 80
Nd0.7Sr0.3MnO3 Polycrystalline Pmmm MAP 238 0.271 � 0.006 0.92 � 0.02 81

Single crystal Pmmm MAP 204 0.57 � 0.01 1.16 � 0.03 82
Nd0.66Sr0.33MnO3 Polycrystalline Pmmm MAP 227 0.23 � 0.02 1.05 � 0.03 83
(Nd0.93Y0.07)0.7Sr0.3MnO3 Polycrystalline Pmmm MAP 170 0.234 � 0.004 1.04 � 0.02 81
Sm0.25Pr0.3Sr0.45MnO3 Polycrystalline Pnma MAP 225 0.230 � 0.004 0.952 � 0.023 84

Polycrystalline Pnma KF 226 0.255 � 0.021 0.957 � 0.014 84

a The system La0.7Ca0.3�xSrxMnO3 is very complex, presenting different crystal structures depending on x. See recent work85 for further details. b In
the original reference they affirm that ‘‘All samples are single phase with orthorhombic perovskites structure’’. So we have assigned the same space
group as Nd0.7Sr0.3MnO3. c Both methods were used, but they did not specify the results for each one.
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respectively. Conversely, no scaling behavior is observed for the
latter case as expected. In this model, the phenomenological
constant introduced to take into account the change in the
volume progressively destroys the scaling behavior in the neigh-
borhood of the critical region, making power laws unusable or
practically nonexistent for 0.2 o Z o 1, despite corresponding
to a second-order phase transition. In contrast, for Z - 0 and
Z - 1 power laws are valid up to applied fields of B10 T, as
expected in materials with Curie point near room temperature.
A similar behaviour has been observed for the universal curve
of magnetic entropy change in different critical regimes. The
lack of scaling typically produces a spread of the universal curve
in the ferromagnetic region, which can also be associated with
the magnetic saturation of the sample in second order phase
transitions. For weak first order phase transitions a more
reliable criterion to determine the order of the phase transition
would consider the spread of the curves in the paramagnetic
range, as this is not affected by saturation.

On a broader context, our results shed new light on some
points which remained unclear. (1) We have confirmed the
unequivocal relationship between the critical scaling and the
power laws and the collapse of curves for different fields onto
the universal one and vice versa. (2) Although it is possible to
determine the nature of the phase transition after a quick
analysis of the universal curve in the vast majority of cases,
we have detected that there are some limiting cases of weak
first order phase transitions in which the collapse is also
good. For these particular cases, it is not possible to determine
the nature of the phase transition by a mere inspection of
the universal curve. A more detailed quantitative analysis in
needed in these cases, focusing on the paramagnetic regime.
And finally (3) we have used literature data for a set of
manganites which undergo a continuous phase transition near
a tricritical point, evidencing that this tricriticality occurs only
at specific conditions that are very difficult to control from an
experimental point of view. Although according to the theore-
tical results presented in this paper power laws and critical
scaling should take place, it is very hard to reach such a level
of accuracy in the experimental samples. Due to this high
specificity, minor deviations from the ideal conditions, Z a 1
in the Bean–Rodbell model, make scaling not necessarily
applicable. The presence of impurities or minimal uncertain-
ties in the stoichiometry in the samples, otherwise candidates
to have tricritical behaviour, would make scaling difficult in
practical terms.

The combination of an extensive analysis of the different
critical regimes of the Bean–Rodbell model with the revision of
literature data and quantitative determination of the scaling of
the magnetocaloric results carried out in this work allows
establishing on more solid grounds the applicability limits of the
scaling behavior and the universal curve for magnetocaloric data.
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50 P. Álvarez, P. Gorria and J. A. Blanco, Phys. Rev. B: Condens.
Matter Mater. Phys., 2011, 84, 024412.

51 M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, J. D. Moore,
M. Richter and O. Gutfleisch, Appl. Phys. Lett., 2011, 99, 012501.

52 L. J. Ding, Y. Zhong, S. W. Fan and L. Y. Zhu, Phys. Chem.
Chem. Phys., 2016, 18, 510.

53 R. B. Griffiths, Phys. Rev., 1967, 158, 176.
54 C. M. Bonilla, J. Herrero-Albillos, F. Bartolomé, L. M. Garcı́a,
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