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Guillermo López-Poĺın,1 Maria Ortega,2 J. G. Vilhena,2, 3 Irene Alda,1 J.

Gomez-Herrero,1, 4 Pedro A. Serena,3 C. Gomez-Navarro,1, 4 and Rubén Pérez2, 4
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Part I: EXPERIMENTS

SI1. SAMPLE PREPARATION AND DESCRIPTION.

Substrates with circular wells were obtained in Si/SiO2 patterned with optical lithogra-

phy and reactive ion etching. Graphene monolayers obtained by mechanical exfoliation of

natural graphite were first identified on these substrates by optical microscopy and then

corroborated by Raman spectroscopy as described in in ref. 1. AFM images in non contact

mode showed that each graphene flake usually covers several of these circular well forming

graphene drumhead structures. As reported previously2, we observed that graphene flakes

adheres to the wall of the wells for 2–6 nm. Only monolayered membranes showing a flat

and featureless surface (i.e. absence of bubbles or wrinkles) were selected for this study.

SI2. INDENTATION CURVES.

AFM images and indentation curves were measured with a Nanotec commercial mi-

croscope and WSxM software package3. These curves were acquired at the center of the

suspended area with standard silicon probes with nominal force constant of 3 N/m and tip

radius RTIP = 30nm from Nanosensors. This ensures that the ratio between the radius

of the graphene drum and the tip RDRUM/RTIP > 10, allowing the use of equation 1 in

the main text (see ref. 4 for a detailed explanation). Each cantilever was calibrated during

experiments using Sader method5, leading to values between 1.5-2.8 N/m. While we have

not observe any variation at indentations speeds between 10-1000 nm/s all the indentation

curves for this study were acquired at a fixed rate of 90 nm/s.

In order to use equation 1 in the main text, indentation has to be accurately estimated.

Indentation (δ) is not a direct experimental measure; it is calculated from the differences of

the relative displacement of the sample and the tip on the non-deforming SiO2 substrate.

In order to correctly determine δ we always perform a calibration indentation curve on the

nearby substrate before and after acquiring curves on the membrane. Representative curves

are illustrated in figure S1.

Since measurements were acquired at varying temperature we also checked that the sam-

ple displacement calibration did not change upon this temperature changes.
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FIG. S1. Representative Force vs. displacement curves acquired on the suspended graphene and

SiO2 substrate. Zoom in the region of cero force level to highlight the cero displacement point, O.

For an accurate determination of δ is then critical to fix the cero displacement point,

and cero force level. This is determined by the point where the curves cross at the cero

force level. The experimental noise makes difficult an accurate determination of this level

as the data cross several times the horizontal axis. In order to minimize this incertitude

we fitted the curve acquired on the membrane to a third order polynomial and calculated

the crossing point of this polynomial with the horizontal axis. F(δ) Indentation curves were

then fitted to equation 1 in the main text by least square minimization, with σ0 and E2D as

fitting parameters where σ0 corresponds to the stress of the membrane. Figure S2 displays

representative Force curves.
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FIG. S2. (a) Force vs. indentation curve measured at the center of the suspended area on a

circular drumhead (black). Fitting to eq. 1 in the main manuscript is overlaid in red (σ0 = 0.3 N/m,

2a = 750 nm, E2D = 385 N/m). (b) Force vs. sample displacement obtained on a circular graphene

drumheads at two different sample temperatures: 13 � (green), and 66 � (red). The dashed lines

are a guide to the eye to indicate the slope of these curves at low indentations.

SI3. DEFECT CREATION AND CHARACTERIZATION

Defect creation: Irradiation of the samples was performed in a high vacuum (HV)

chamber with a base pressure of 1×10−7 mbar. The Ar pressure during irradiation was

5×10−5 mbar . Ar+ energy was set to 140 eV. In our set up the irradiated area fully covers

the sample holder, therefore the density of defects can be readily estimated in real time by

measuring the ionic current and assuming that each argon ion removes one carbon atom6,7.

Raman spectroscopy: Raman spectra were performed using a WITEC/ALPHA 300AR

Raman confocal microscope at ambient conditions. The laser wavelength and power were

532 nm and 0.7 mW respectively. Graphene monolayers were first identified by optical

microscopy and then corroborated by Raman spectroscopy as described in ref. 1.

Determination of defect density: Raman spectra of the defected samples present

a new peak around 1350 cm−1, known as D peak (see Fig. S3). The ratio between the

intensities of the D peak and the G peak (ID/IG) informs about the density of defects

induced on the sample.8 Maps of Raman spectra of the entire graphene flakes were acquired

to ensure the homogeneity of the flake. In order to estimate the ID/IG relation we acquire

average spectrum always on the same region of the flake.
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FIG. S3. (a) Raman spectra of a pristine (blue) and a defective graphene membrane (red). Each

peak (D, G, D’ and 2D) is labeled. (b) Values obtained for ID/IG vs ID′/IG, giving ID/ID′=6.9±

0.5., and, thus, supporting the presence of in–plane vacancies.

The mean distance between defects after each irradiation dose (LD) is estimated according

to the expression given in reference8, i.e. :

ID
IG

= CA
(r2A − r2S)

(r2A − 2r2S)

(
e
−πr

2
S

LD − e−
π(r2A−r

2
S)

LD

)
(1)

Where we consider rS=1 nm, rA=3.1 nm and CA=A.E−4L , where EL is the laser energy and

A=180 eV.

Determination of the nature of defects: Additional information about the nature

of defects can be obtained from the ratio between the intensities of D and D′ peaks of the

Raman spectra as reported in reference9. For the case of vacancy-like defects this ratio

should be about 7, and about 13 for sp3 type defects. The slope of the regression line

drawn in Fig. S3 yields an average value for this ratio of 6.9, implying the presence of in

plane vacancies, instead of sp3–type defects (oxidized, hydrogenated, fluorinated, ...). This

analysis allows us discarding the presence of chemisorbed molecules on the graphene surface.

Scanning Tunneling Microscopy (STM) of graphite before and after Ar irra-

diation: In order to further corroborate the punctual vacancy nature of defects created

by Argon irradiation in the conditions described in the main text, we irradiated HOPG

graphite samples in these conditions and imaged them before and after irradiation by STM

in air-ambient conditions.

Figure S4 displays STM images of graphite before and after irradiation in the exact

5



FIG. S4. Atmospheric STM images of graphite before (lower images) and after (upper images)

irradiation with Ar ions with the same conditions used for graphene. Image sizes are: panels (a) and

(d) 35×35 nm2, panels (b) and (e) 15×15 nm2, panel (c) 8.5×8.5 nm2 and panel (f) 6.3×6.3 nm2.

Region (2) in panel (c) corresponds to the threefold
√

3 ×
√

3 perturbation due to the defect, in

contrast to the hexagonal atomic periodicity typically observed by STM in pristine graphite (region

1) of the same panel.

same conditions used in the experiments described in the manuscript. While images in

graphite prior to irradiation show perfect atomic lattice, atomically resolved images on

irradiated samples reveal small defects. These defects, visualized as small protrusions by

STM, are uniformly distributed all through the sample. On the regions between defects

we always observe a clear and perfect atomic periodicity corresponding to that typically

observed by STM in pristine graphite. Our high resolution images of defects (Fig. S4c)

are in excellent agreement with those reported previously for single–atom vacancies7,10,11.

Furthermore, the electronic perturbation near the defects observed as a threefold periodicity

surrounding defects identifies them unambiguously as point defects (i.e. smaller than lattice
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FIG. S5. Loading and unloading Force vs indentation curves acquired on a pristine (a) and a

defective (b) graphene drum showing high reproducibility.

spacing). The irradiated graphite surface was scanned in air ambient conditions by STM

during 3 consecutive days and we did not observe any trace of image degradation by airborne

molecules.

SI4. CLAMPING CONDITIONS.

Some authors have reported bad clamping condition and sliding of graphene upon de-

formation, and suggested that defect creation might improve clamping conditions. We can

discard this possibility based on the observation that the stress of the membranes increases

faster with temperature in pristine drumheads. If defects improved clamping conditions, pre-

stress of the defective membranes should increase faster. Further support for good clamping

and fixed boundary conditions stems for the reproducibility of consecutive F (δ) curves,

their coincidence in loading and unloading direction (see Fig. S5), and the good fitting to

equation 1 in the main text. However, it is worth mentioning that we do observe graphene

sliding for temperatures above 80 � and this effect yields to random measured pretensions

with no correlation with temperature. Therefore, we have restricted our measurements to

temperatures below 75 �.

7



SI5. CORRELATION BETWEEN THE EVOLUTION OF GRAPHENE TEC AND

ELASTIC MODULUS E2D WITH THE DEFECT CONCENTRATION.

The here-in presented results support previous studies performed in our group where we

observed graphene stiffening upon defect creation11. In that work, a similar density of the

same type of defects was created in suspended graphene membranes. Characterization of the

elastic response of these membranes showed that the elastic modulus of suspended graphene

FIG. S6. Experimentally measured TEC (upper panel) and two dimensional elastic modulus (lower

panel, reported in ref. 11) as a function of the density of controlled induced mono–vacancies. The

red dashed line highlights the defect density at which both magnitudes reach their maximum value.
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increases from ∼ 300 to ∼ 550 N/m for a defect density of 0.2 %. We initially attributed

these changes to the suppression of flexural modes in graphene caused by mono-vacancies.

Figure S6 shows the data already reported for the elastic modulus of graphene11 and the

here presented data of the TEC of graphene as a function of mono-vacancy density. In the

graph, we can appreciate the similarity in the trend of both magnitudes: They increase

with defect density until a concentration 5× 1012 def/cm2 where they reach their maximum

value. This comparison, therefore, supports the notion that graphene elastic response at

room temperature is strongly influenced by the presence of out of plane thermal fluctuations.
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Part II: MOLECULAR DYNAMICS SIMULATIONS

SI6. INTERATOMIC POTENTIALS AND SIMULATION DETAILS.

Molecular dynamics (MD) simulations were performed with the LAMMPS software

suite12 and the reactive force field AIREBO13,14 to describe the interatomic interactions.

AIREBO, the well known second generation of the reactive empirical bond order (REBO)

potential, describes a wide range of mechanical15 and thermal properties16,17 of pristine15–17

as well as defective15,17 graphene. In particular, the torsional term of this force field provides

a good description of the low energy out–of–plane phonon modes of graphene (ZA,ZO), which

are crucial to reproduce the negative TEC of graphene and its change with temperature.

We have modeled a large (63a × 35
√

3a) ∼ 15 × 15 nm2 unit cell (a is the graphene

lattice parameter) with different concentrations and distributions of monovacancy defects

(see Fig. S12) at different temperatures. The unit cell for the pristine case includes 8820

atoms. We use periodic boundary conditions (PBC) with the corresponding 2D unit cell

(for x and y directions) and a large vacuum of 40 nm in the z direction). In all simulations,

Newton’s equations of motion have been integrated with the velocity–Verlet integrator with

a time step ∆t = 1 fs. A total simulation time of 40 ns have been used in order to ensure

a proper sampling of the thermal fluctuations and to reach the high accuracy on the lattice

parameter (∼ 10−5Å) needed to determine changes in the TEC (see Fig. S7) and in the stress

(see Fig. S10.) For NPT simulations, the temperature and pressure of each simulation are

kept constant using the Nose-Hoover thermostat and barostat as implemented in LAMMPS.

The PBCs together with the pressure restrain (P = 0 atm) allow the box size (lx× ly) to be

relaxed to the equilibrium at each temperature value. For NVT simulations, we use the same

protocol but we keep the box size constant (constant volume) using the lattice parameter

of pristine graphene at T = 210 K. The lower temperatures (210–300 K) chosen for the

theoretical analysis compared to the experiment (283–348 K) help to achieve the precision

needed to determine the changes in the lattice parameter with shorter simulation times.
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SI7. SPATIAL AND TIME AVERAGES

Lattice parameter

The lattice parameters plotted in Figure 3a are determined from the time average (here-

after denoted 〈· · · 〉) of the instantaneous value, a(t), for each time step over the last 20 ns,

[ti = 20 ns , tf = 40 ns], of the corresponding NPT simulation:

〈a(t)〉 =
1√
Nf

tf∑
ti

a(t); a(t) =

√
lx · ly

63 · 35
√

3
. (2)

where a(t) is determined from the instantaneous dimensions lx(t) and ly(t) of the unit cell.

Nf = (tf − ti)/∆t is the number of time steps that are included in the average. For details

on the convergence of 〈a(t)〉 (see Fig. S7).

Spatially averaged out–of–plane fluctuation h(t)

We have evaluated for each time step, t, the spatial average, z(t), and standard deviation

(RMS), h(t), of the z coordinate of the N atoms of the membrane:

h(t) =
1√
N

[
N∑
i=1

(zi(t)− z(t))2

]1/2
; z(t) =

1

N

N∑
i=1

zi(t) (3)

h(t) represents the amplitude of the out–of–plane fluctuations of the membrane.

Time-averaged out-of-plane fluctuation per atom (2D maps) 〈h(r̄i)〉

The 2D maps in Figure 4b display 〈h(r̄i)〉 = 〈(zi(t)−zi)2〉1/2, with zi(t) the instantaneous

z coordinate for atom i in the unit cell, and zi = 〈zi(t)〉, its time average.

Time–averaged Thermal stress and per–atom stress tensor

The thermal stress σ is linked with the per-atom-stress tensor16:

σ =
1

A

N∑
i=1

(Ki
xx +Ki

yy +Ki
zz) =

1

N

N∑
i=1

1

Aat

(Ki
xx +Ki

yy +Ki
zz), (4)

where Ki
aa = Kaa(r̄i) are the diagonal components (a = x, y, z) of the per–atom stress tensor

for atom i; A = NAat is the total area of the unit cell, with Aat the area per atom, and N

the number of atoms.

We have calculated σ in our NVT simulations as a time average over the last 20 ns of

the instantaneous pressure P (t), using the relations:

σ = −3V

A
〈P (t)〉; P (t) = − 1

3V

N∑
i=1

[
Ki

xx(t) +Ki
yy(t) +Ki

zz(t)
]
. (5)
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For details on the convergence of 〈σ〉 see Fig. S10.

The 2D stress maps shown in Figure 5b in the main text correspond to the time average

(last 20 ns) of the in–plane stress per atom (normalized by Aat) 〈K‖(r̄i)〉:

〈K‖(r̄i)〉 =
1

2Aat

〈Kxx(r̄i, t) +Kyy(r̄i, t)〉 (6)

Our simulations confirmed that the contribution of the out–of–plane stress 〈Kzz(r̄i)〉 is ap-

proximately 10 times smaller than the in–plane contribution.
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SI8. CONVERGENCE OF THE TIME AVERAGES AND DEPENDENCE ON DE-

FECT CONCENTRATION AND TEMPERATURE

Here we present further information on the convergence of the time averages for the lattice

parameter in NPT simulations and the stress in NVT simulations, the TEC dependence on

the defect distribution and the number of sampling temperatures, and the thermal stress as

a function of temperature for different defect concentrations.

Δa  = 3E-05

(a) (b)

FIG. S7. Determination of the equilibrium lattice parameter from NPT simulations

(a) Instantaneous value a(t) of the lattice parameter (black) and running average (including the

previous 106 time steps, red) for the pristine monolayer at 300 K. (b) Incremental time average

(red dots) 〈a〉(tav) = 1√
Nf

∑tav
ti
a(t), with Nf = (tav − ti)/∆t, calculated for the last 20 ns of

the simulation shown in (a), ti = 20 ns, tav = 21, · · · , 40 ns. The red line is a guide to the eye.

These results confirm that the simulations are long enough to achieve a precision (∼ 10−5 Å) in

the determination of the lattice parameter. The ordinate scale is identical to Fig. 3a in the main

manuscript. The lattice parameter values plotted in Fig. 3a in the main manuscript and used for

the TEC calculation are the mean value of the last ten values of 〈a〉(tav), tav = 31, · · · , 40 ns for

each NPT simulation.
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Defect density (1012 cm−2) 0 0.89 2.22 4 (i conf.) 4 (ii conf.) 4 (iii conf.) 4 (iv conf.) 6.22

aT=210K (Å) 2.41686 2.41684 2.41684 2.41695 2.41686 2.41690 2.41696 2.41699

aT=240K (Å) 2.41653 2.41662 2.41668 2.41663 2.41670 2.41666 2.41662 2.41676

aT=270K (Å) 2.41640 2.41632 2.41651 2.41649 2.41645 2.41651 2.41653 2.41660

aT=300K (Å) 2.41611 2.41620 2.41617 2.41639 2.41630 2.41631 2.41633 2.41643

m (10−6 ÅK−1) -7.91342 -7.39712 -7.24532 -6.02112 -6.45572 -6.4118 -6.61172 -6.16047

a0 (Å) 2.41922 2.41923 2.41936 2.41938 2.41938 2.41938 2.41938 2.41995

TEC (10−6 K−1) -3.27106 -3.05763 -2.99473 -2.4887 -2.66834 -2.65018 -2.73282 -2.5457

FIG. S8. Lattice parameter as a function of temperature for different defect densities.

(top) Linear fits for aT for each defect concentration. The fit for Cdef = 4×1012 cm−2 corresponds

to the (i) configuration (See Figure S12). (bottom) Lattice parameter aT for each temperature

and defect concentration, slope of the fits (m) plotted above, lattice parameter value at T = 0 K

(a0), and calculated TEC.
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(a) (b)

FIG. S9. TEC dependence on the number of sampling temperatures and defect dis-

tribution. (a) Lattice parameter versus T for one of the defective cases (Cdef = 4 × 1012 cm−2,

configuration (i)) and the corresponding fit using 10 different temperatures (solid black line). The

fits for the pristine case (solid green line), and the same defect configuration (dotted black line)

using 4 different temperatures plotted in Fig. 3a in the main manuscript are shown for comparison.

No significant changes in the TEC are found when using a denser sampling of the same temper-

ature range, supporting our choice of sampling only four temperatures for the rest of the TEC

calculations. (b) Lattice parameter versus T for the four different defect configurations studied for

Cdef = 4 × 1012 cm−2 (see Fig. S12). The lines are the corresponding linear fits. The results for

the pristine case (green) are shown for comparison. These results rule out a strong dependence of

the TEC with the defect distribution for a given defect concentration.
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(a) (b)

Δσ  = 6E-03

FIG. S10. Determination of the thermal stress from NVT simulations. The procedure

followed to compute the thermal stress and determine its convergence follows closely the one used

for the lattice parameter (see Fig. S7). (a) Instantaneous value of the thermal stress (pristine

monolayer, 300 K) (black) and running average (including the previous 106 time steps, red). (b)

Incremental time average (red dots) 〈σ〉(tav) for the last 20 ns of the simulation. The ordinate

scale is identical to Fig. 5a in the main manuscript. The thermal stress values plotted in Fig. 5a

in the main manuscript are the mean value of the last ten values of 〈σ〉(tav), tav = 31, · · · , 40 ns

for each NVT simulation.
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FIG. S11. Thermal stress as a function of temperature for different defect concentra-

tions. Thermal stress versus T for each defect concentration (bullets) and the corresponding linear

fits (lines) The result for Cdef = 4× 1012 cm−2 corresponds to defect configuration (i) in Fig. S12.
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(A) (B) (C)

(D)

(E)

(i) (ii) (iii)

(iv) (F)

FIG. S12. Atomic configurations for the defects densities considered in this work. (A)

15×15 nm2 pristine sheet unit cell –corresponding to 63×35 the a×a
√

3 unit cell (green rectangle)

shown in(F)– with 8820 carbon atoms. (B)-(E) Defective sheets, built by removing carbon atoms

from the pristine membrane, and characterized by the defect concentration (Cdef ) and the average

defect–defect distance (ddef ): (B) Cdef = 0.89×1012 cm−2; ddef = 10.6 nm; (C) Cdef = 2.22×1012

cm−2; ddef = 6.70 nm; (D) Cdef = 4 × 1012 cm−2; ddef = 5 nm; (E) Cdef = 6.22 × 1012 cm−2;

ddef = 4.06 nm. For the (D) case, the four different defect distributions, (i) to (iv), analyzed for

this concentration of defects are shown. The results shown in the main manuscript for (D) have

been obtained using configuration (i).
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