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Platinum atomic contacts: From tunneling to contact
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We present a theoretical study of the electronic transport through Pt nanocontacts. We show that the analysis
of the tunneling regime requires a very careful treatment of the technical details. For instance, an insufficient size
of the system can cause unphysical charge oscillations to arise along the transport direction; moreover, the use of
an inappropriate basis set can deviate the distance dependence of the conductance from the expected exponential
trend. While the conductance decay can be either corrected by employing ghost atoms or a large-cutoff-radius
basis set, the same does not apply to the corrugation, for which only the second option is recommended.
Interestingly, these details were not found to have a remarkable impact in the contact regime. These findings
are important for theoretical studies of distance-dependent phenomena in scanning-probe and break-junction
experiments.
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I. INTRODUCTION

Over the past decade, metal nanocontacts have attracted
remarkable interest as they make it possible to study the
electronic, mechanical, and thermal properties of metal atoms
in low-coordination conditions [1–6], besides offering the
possibility of being operated as two-terminal switches [7].
Furthermore, a thorough understanding of their electron
transport properties is crucial in molecular electronics, where
the total transmission through metal-molecule-metal junctions
often includes contribution from metal-to-metal current [3].
Investigating metal contacts at the nanoscale has been possible
especially thanks to the refinement of scanning tunneling mi-
croscopy (STM) and mechanically-controlled-break-junction
(MCBJ) techniques. In particular, studies on Pt contacts have
revealed interesting effects. For example, it was observed that,
upon elongation, the conductance oscillates and the number
of scattering channels changes [8–10]. In addition, it was
suggested that Pt is a good candidate as electrode material
in molecular junctions as it makes rectification independent of
stretching distances [11]. The trapping of molecules in Pt-Pt
junctions, such as CO, has also been studied quite extensively
and is still the object of interesting analyses [12]. Nevertheless,
the amount of theoretical studies on electron transport through
Pt nanocontacts [9,13–24] still remains limited compared, for
instance, to gold. The latter is more widely used in experiments
due to its noble character and, consequently, has often been
employed as staple electrode material in theoretical simula-
tions. Furthermore, the Au electronic structure is particularly
convenient for transport calculations, as we proceed to explain.
The most common tool to compute electron transmission
is the combined DFT (density functional theory)+NEGF
(Non-Equilibrium Green’s Functions) method [25–32], which
is by now implemented in several codes. Many of them include
self consistent cycles in which convergence must be reached
for input and output charge density. Such a task is easier
on Au structures than on their Pt analogues, due to the fact
that the Au valence band consists of the 6s orbital mainly,
while that of Pt consists of both the 6s and 5d bands. The
limitations and inaccuracies of DFT are well known, as is the
huge effort which is currently being made to try to overcome

them by applying corrections or using alternative theoretical
techniques [33]. Nevertheless, the DFT+NEGF method is still
widely used, especially for large systems. In this piece of work,
we will show theoretical results based on benchmark electron
transport calculations on Pt nanocontacts. We will discuss how
to perform them in an accurate manner; furthermore, we will
examine whether strategic approximations can be made to
make these calculations less cumbersome without jeopardizing
the quality of the final result. In particular, we will focus on
the transition from tunneling to contact regime, which has not
been studied to the same extent as contacted systems [34,35]
but which is extremely important when studying distance-
dependent phenomena in STM or MCBJ experiments. For
instance, it was shown that a change in conductance due
to inelastic effects makes it possible to characterize the
crossover from tunneling to contact [36]; it was also observed,
in spin-polarized system, that the transmission probabilities
of the eigenchannels present a nonmonotonic behavior as a
function of the tip-adatom separation [37].

II. METHODOLOGY

We performed electron transport calculations by means
of the NEGF extension of the OpenMX code [29], which
is by now widely used [38–43]. The model implemented in
this software makes use of periodic boundary conditions. The
basis sets employed consist of linear combinations of atomic
orbitals generated by a confinement scheme which yields
wave functions with zero value beyond a chosen cutoff radius
[44,45]. For all elements, basis sets which have already been
conveniently predefined and optimized are provided by the
software distribution. Following the OpenMX notation, we
will define the basis sets by combinations of lx sets, l being
the orbital and x being the number of primitive orbitals used
for the construction.

To describe the Pt electronic structure we either used the
minimal basis set s1p1d1 (containing 5p, 5d, and 6s orbitals)
or the s2p2d1 basis set with a cutoff radius of 7 Bohr, if not
stated otherwise. Notice that, by constructing the p orbital
with two primitive functions, we have taken polarization into
account, since 6p orbital is the lowest unoccupied orbital. In
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FIG. 1. Geometry used to analyze the Mulliken charges in the
3-6-3 system of Fig. 2. The vertical black lines separate the central
(C), left (L), and right (R) region.

all cases, the exchange-correlation functional GGA (PBE13)
[46] was employed and the integration over k space was
numerically performed by using a Monkhorst-Pack mesh [47],
where the number of k points was varied depending on the
specific case. For the numerical integrations and the solution of
the Poisson equation an energy cutoff of 200 Ry was used. All
calculations were converged until the deviation of the energy
eigenvalue reached a value lower than 10−6 H.

III. RESULTS AND DISCUSSION

In OpenMX, as in most DFT+NEGF based codes, the
whole structure is thought of as divided into three regions,
namely left (L), central (C), and right (R) (Fig. 1). The
electronic transmission is evaluated by the Landauer formula.
Defining k as the Bloch wave vector and σ as the spin index,
the spin resolved transmission is given by

Tσ (E) = 1

Vc

∫
BZ

dk3T k
σ (E), (1)

where T k
σ is the k resolved transmission defined by

T (k)
σ (E) = T r

[
�

(k)
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]
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(2)

�σ,L and �σ,R are the coupling matrices to the left and right
lead. The Green’s function of the central C region can be
written by
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More details about these equations can be found in Ref. [29].
G

(k)
σ,L(Z) is the surface Green function, which is calculated by

a preliminary standard DFT calculation. This is performed on
a bulk structure which has the same chemical composition of
the electrode and which is repeated periodically in all three
space directions.

The first technical issue that has to be addressed is how large
each region has to be along the transport direction in order to
get a converged value of the conductance. This question is
common to other NEGF codes such as tranSIESTA [27] and
ATK [48], where convergence has been studied as a function of
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FIG. 2. Mulliken population with (left) s1p1d1 and (right)
s2p2d1 basis set in systems l-c-r , where l(r) and c indicate the
number of layers in each lead and in the central part, respectively.
The following combinations are shown: 3-6-3 (a), 3-9-3 (b), 3-12-3
(c), 6-6-6 (d), 6-9-6 (e). The vertical dashed green light indicates the
5 Å separation.

the size of the central area. Due to differences in the generation
of the basis sets between these codes and OpenMX, such
as in the definition of the core potential in the confinement
scheme [44,45,49], it is by no means obvious that the very
same criteria should apply to our systems. Therefore, we have
applied systematic changes to the size of both the leads and the
central part of a Pt-Pt junction and checked how these changes
affect to the electronic structure, focusing in particular on the
presence of unphysical charge oscillations that can arise close
to the leads and which can ultimately affect the computed
conductance.

As a first example, we shall analyze the case of the transport
through two Pt slabs separated by 5 Å distance along the
{111} direction. A periodically repeated 1 × 1 unit cell was
considered, with an 8 × 8 × 1 k-point grid (Fig. 1). Notice that
the coordination of all atoms is large enough for magnetism to
be absent [8]. Figure 2 shows the Mulliken population on each
atom along the transport direction for different combinations
l-c-r for the number of layers in the central region (C) and in
the left (L) and right leads (R) [red numbers in panels (a)–(e)].
More precisely, l and r indicate the number of layers in the bulk
structure, employed for the preliminary left and right electrode
calculation, which are repeated infinitely along the transport
direction. In Fig. 2, the three areas are separated by vertical
red lines, while the dashed green line indicates the vacuum
separation. The Mulliken charges are shown for both s1p1d1
(left) and s2p2d1 (right) basis set. The average value of 16
(higher than the 10-electron valence of Pt) is due to having
included the electrons of the 5p orbital. It can be observed that
strong charge oscillations (up to 0.8 e) appear in proximity of
the leads, especially with the s2p2d1 basis set.This suggests
that, while an improvement of the basis set is naively expected
to yield better-quality results, in this case it can actually worsen
other details such as the charge population (it is worth noting
that improving the quality of the basis set was found to give

125438-2



PLATINUM ATOMIC CONTACTS: FROM TUNNELING TO . . . PHYSICAL REVIEW B 95, 125438 (2017)

0.5

1

1.5

Tr
an

sm
is

si
on

3-6-3
3-12-3
3-9-3
6-6-6
6-9-6

0.5

1

1.5

Tr
an

sm
is

si
on

-0.4 -0.2 0 0.2 0.4
E-EF(eV)

0.02

0.04

0.06

Tr
an

sm
is

si
on

0 Å

2 Å

5 Å

FIG. 3. Transmission as a function of energy for the s2p2d1
systems (a)–(e) of the right panels in Fig. 2.

qualitatively wrong conclusions also in previous NEGF work
for other reasons [50]). The presence of the fluctuations does
not seem to be related to the separation distance between the
leads, as it was also found to take place, for instance, in the
contact regime. Similar oscillations have also been observed
in NEGF calculations for carbon chains (Fig. 3 of Ref. [29]),
albeit with smaller amplitude. We also found that replacing
Pt with Au causes a reduction of the oscillations (see the
corresponding Mulliken population for the system 3-6-3 in the
inset of Fig. 2). In this case, the population did not seem to be
affected by an improvement of the basis set as much as for Pt,
probably because of the different electronic structure. Figure 2
shows that, in order to keep a significant portion of the central
region unaffected by such oscillations, it is necessary to either
increase l (r) [as in panels (d) and (e)] or c [as in panels (b)
and (c)]. However, the second option is more recommendable
as the first one causes the computational time of the NEGF run
to increase considerably.

Subsequently, we proceeded to check how these charge
oscillations affect the energy dependence of the electronic
transmission. Figure 3 shows the transmission curves for the
systems (a)–(e) of the right column of Fig. 2, calculated with
the s2p2d1 basis set and a 48 × 48 k-point grid at three
different separation distances (0, 2, and 5 Å). It can be observed
how, at 0 and 2 Å, no remarkable differences appear in the
energy range around the Fermi level. At 5 Å instead, in the
same region the transmission for the 3-6-3 system is strikingly
different from the others, as the transmission in the energy
region below is generally lower than in the curves of the other
l-c-r sets. Although the low-bias conductance values of the
five transmission curves are not very different from each other,
overall the results we presented so far indicate that the 3-6-3
system is not large enough and either the size of the leads or of
the central region must be extended as in the other cases. Since
extending the leads was found to increase the computational
time more than increasing the central part did, we propose the
3-12-3 structure as a good compromise.

We now turn to analyze the distance dependence of the
conductance and how it is affected by differences in the
basis sets. In the inset of Fig. 4, we show the geometry
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FIG. 4. ln of the conductance obtained throughout the stretching
process of the junctions, starting from a hollow and a top binding
configuration, for three different cutoff radii as well as by making use
of ghost atoms.

we employed. We considered two cases, in which the apex
of the tip of the upper lead falls on an hcp and on a top
site of the lower lead. The structure is a 4 × 4 periodic cell
and the central area comprises 6 layers on each side, while
each lead consists of 3 layers. In both cases, we increased
the separation distance from the initial value of 2.6 Å and
calculated the conductance stepwise. In Fig. 4, we compare
the natural logarithm (ln) of the conductance values obtained
in both cases. We adopted three different cutoff radii for the
basis set confinement (7, 9, and 11 Bohr). In the intermediate
range 3.6–5.6 Å, all curves approximately present a linear
shape (corresponding to the expected exponential decay of
the conductance) and no significative quantitative differences
are visible. At closer distances we can observe the typical
deviation from a linear behavior, which is expected in the
contact regime [35]. For the shortest cutoff radius of 7 Bohr, the
curves show deviation from linearity also beyond 5.6 Å. This
problem is well known and is usually solved by inserting ghost
atoms in the vacuum region (which can occasionally hamper
the scf convergence) or by using plane-wave-based methods
[32,35,51]. A comparison between the use of ghost atoms and
increasing cutoff radius was previously performed by Siesta
calculations [51] for what concerns the spatial behavior of
silver wave functions. There, the insertion of ghost atoms was
claimed to provide closer results to those obtained with plane
waves calculations. However, instead of the wave functions, we
chose to focus the comparison on physical quantities such as
the conductance and the corrugation. Notice also that, despite
the thorough study of Ref. [51], the results there obtained
cannot be automatically applied to our system because of the
differences in the confinement scheme, as mentioned above.
In Fig. 4, we also show the results obtained by inserting ghost
atoms. It can be noticed that the ensuing conductance values
are very similar to those obtained by increasing the cutoff
radii to 11 Bohr. Moreover, the employment of ghost atoms
did not show any particular advantage concerning, for instance,
the computational time needed to achieve convergence. This
indicates that increasing the cutoff radius can indeed be a viable
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FIG. 5. Conductance in top and hollow geometry (solid lines) and
corresponding interpolation (dashed lines) for three different cutoff
radii and for the insertion of ghost atoms. In the inset, the corrugation
as a function of the separation distance is shown.

alternative solution to this well-known problem, as it yields
reliable results without the insertion of additional elements
in the geometry. We will also show in the following that the
employment of ghost atoms can lead to a wrong evaluation
of the corrugation in the tunneling regime. In Fig. 5, we
compare, for each cutoff radius and for the ghost-atom case,
the conductance values obtained in the top geometry with
that obtained in the hollow at the same separation distance.
Interpolation curves obtained by the Akima spline method
in the range 2.6–4.6 Å are also shown (dashed lines). In the
inset of the bottom right panel of the same figure we report
the corrugation as a function of distance for all four sets.
This quantity was calculated from the interpolation curves
by evaluating, at each conductance value, the difference in
tip-surface distance between the corresponding top and hollow
geometries. Such a difference (the corrugation) has been
plotted against the average tip-surface distance. In all four
cases, the corrugation is negative and follows a linear trend up
to about a distance of 3.5 Å. Beyond this value, however, while
the curves for cutoff radii of 7, 9, and 11 Bohr reach positive
values and saturate at 0.1 Å approximately, the corrugation
relative to the insertion of ghost atoms fails to reproduce this
inversion, remaining negative. The origin of such a discrepancy
can be spotted in the main four panels of Fig. 5: in the ghost
case, the conductance for the hollow position is always higher
than for top, whereas, in the other three cases, an inversion
takes place at 3.5 Å. This change at intermediate distances is
indeed expected, as it has also been observed in other systems
[52].

Finally, in order to assess the reliability of our results, we
explored how changes in the number of primitive functions
employed to construct the basis sets affect the conductance
and how these results compare with those obtained by other
models. To this aim, we chose the same geometry (depicted
in the inset of Fig. 6) as in Ref. [21], where the Pt electronic
structure was described by means of Wannier functions. In
our system, however, we added three more layers on each side
of the central part in order to avoid the charge oscillations
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FIG. 6. Transmission as a function of energy, for the geometry
depicted in the inset, in four different cases: in the first two, either
the s1p1d1 or the s2p2d1 basis set is used for both leads and central
region; in the other two cases, the atoms in the tip and the innermost
layer (on both sides) is described by either s2p2d1 or s2p2d2, while
the rest is treated by the s1p1d1 set.

discussed above (Fig. 2). The distance between the two tip
apices is 2.8 Å, hence in the regime in which the conductance
is not affected by the cutoff radius. Note that, for a similar
structure, the lower coordination of the tip apex was found to
give rise to spin polarization [53]. However, for the present
purpose we chose to neglect it since including it would worsen
the numerical performance considerably and would not change
our main conclusions. We either used the s1p1d1 or s2p2d1
basis set for all atoms. However, we also considered a case
in which not all atoms were treated in the same way: There,
the atoms in the tip and the innermost layer on each side
were described by either the s2p2d1 or s2p2d2 set, whereas
the s1p1d1 set was used for the rest. This mixed strategy is
quite frequent in theoretical studies of metal nanocontacts as
it allows a good description of the central relevant region at
a reasonable computational cost [20,54]. For all four cases,
the self consistent cycle was performed with a 4 × 4 k-point
grid; subsequently, the transmission, reported in Fig. 6 as a
function of energy, was calculated using the same 6 × 6 k-point
sampling as in Ref. [21]. The four curves (see Fig. 6) show,
right below the Fermi level, two peaks stemming from the
expected contribution of the s and d states [16] and from the
loss of degeneracy of the d states due to symmetry reasons
[19]. In the critical region around the Fermi level, the s1p1d1
curve shows a slight downshift (0.05 eV) with respect to the
other cases, in agreement with what was observed in Fig. 3
of Ref. [15]. In this range all curves appear similar to those
reported in Ref. [21], although shifted down in energy by
around 0.25 eV. In Appendix A, further comparisons with other
models are shown. Overall, we can conclude that, at the Fermi
level and in the contact regime, detail differences in the basis
sets do not affect either the general shape of the transmission
curve or the energetic orbital alignment considerably. More
noticeable changes were observed, instead, at higher energies,
which however do not affect the low bias conductance.
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IV. CONCLUSIONS

We studied the electronic transport through Pt nanocontacts
in the {111} orientation by using the combined DFT+NEGF
methods as implemented in OpenMX. We showed that, while
the analysis of the contact regime is not remarkably affected
by details in the leads and in the construction of the basis
sets, this does not hold for the tunneling regime in many
ways. For instance, at large separation distances between
the two electrodes forming the contact, it is important to
extend either the central or the lead region to a number of
layers so as to avoid the formation of unphysical charge
oscillations in the region of interest. We also showed that,
in this regime, it is necessary to use basis sets with a large
cutoff radius to describe both the conductance decay and
the corrugation accurately. While the former could also be
reproduced by employing ghost atoms, the same strategy
does not apply to the latter, for which ghost atoms fail
to reproduce the inversion in the corrugation expected at
intermediate distances between top and hollow position. These
findings suggest that similar preliminary checks should be
made for other materials, whenever the performance of NEGF
calculations aims at the study of distance-dependent effects.
This concerns, for example, the analysis of scanning-probe
experiments. Ultimately, we proved the robustness of our
results by comparing them with those obtained by other
NEGF-based models.
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APPENDIX A: COMPARISON WITH ANT

To further corroborate the robustness of our results, we
investigated how the energy dependence of the transmission
is affected by detail differences in the DFT+NEGF model
employed. To this aim, we repeated our calculations by
the quantum-chemistry code ANT [26,55] which is built as
an interface to Gaussian [56]. There, metals are described
by means of isolated clusters (thus no periodic boundary
conditions are applied as in OpenMX), while the basis sets
consist of linear combination of gaussian functions. Combined
DFT+NEGF methods are by now commonplace and have been
previously compared with other levels of theory [27]. However,
to the best of our knowledge, comparisons between two codes
which employ such fundamentally-different descriptions of
the leads are few and far between [15,25,57]. We chose to
recompute the transmission for the structure of Fig. 6. To
this aim, we employed a geometry consisting of two Au20

pyramidal clusters. As for the basis set, we used a CRENBS
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FIG. 7. Comparison between the transmission curves obtained,
for the geometry depicted in the inset of Fig. 6, by OpenMX with the
s1p1d1 basis set, and by ANT with the CRENBS and Lanl2dz basis
set.

[58] basis set (which includes the same orbitals as in the
s1p1d1 set of OpenMX) and a LANL2DZ set [59].

In Fig. 7, we show a comparison between the transmission
curves obtained by ANT and OpenMX. It can be observed
that, in the range around the Fermi level, the shape of the
OpenMX s1p1d1 curve and the ANT CRENBS curve are
quite similar, as well as the energy alignment. Differences
arising below this range are probably due to how the core
part is treated. The LANl2dz basis set was previously claimed
to give reliable results due to the fact that it does not add
ghost transmissions as supposedly-higher-quality basis sets
do [50]. Interestingly, the general shape of the curve obtained
by OpenMX with its minimal basis set appears to be quite
similar to that calculated by ANT with the LANl2dz set. This
indicates that, actually, the quality of the OpenMX minimal
basis set is comparable to that of well known higher-quality
basis sets. However, the LANl2dz conductance values are

FIG. 8. NormRD throughout the scf convergence steps for the
case in which the NEGF extension is switched on after 5000 steps
(case 1, black curve) and only 3000 steps (case 2, green curve).
Waiting for NormRD to reach a much lower value before switching
to the NEGF method does not accelerate the convergence process.
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LINDA A. ZOTTI AND RUBÉN PÉREZ PHYSICAL REVIEW B 95, 125438 (2017)

higher by approximately 0.5 G/G0. The computed values can
hardly be directly compared with the experiments, since typical
MCBJ measurements provide histograms which cannot be
directly related to exact detailed geometries. Experimental
values around 0.5 and 1.5–2 G/G0 have been reported [2,10,18]
which do not necessary correspond to the geometry analyzed
here. Indeed, because of the presence of the anisotropic d states
at the Fermi level, the conductance is expected to be strongly
influenced by geometrical detail differences throughout the
process of formation and stretching of the junction. High-
resolution transmission electron microscopy indicate, for the
geometry of Fig. 6, a conductance value of 4 G/G0 [Fig. 7(e)
and Fig. 8 of Ref. [60]], which is closer to the LANl2dz value.

APPENDIX B: SCF CONVERGENCE IN OPENMX

In the NEGF calculations as those discussed in this work,
it is necessary to achieve convergence between the input
and output charge densities (let NormRD be the residual

norm between these two quantities). It is well known that
this is facilitated by performing a preliminary standard DFT
run on the central region to obtain the corresponding charge
density as a starting point. In OpenMX, convergence can be
achieved by four different mixing schemes. Surprisingly, in
all systems analyzed for this work, the algorithm RMM-DIIS
with Kerker’s metric [61], which is slow but very efficient for
standard DFT calculations, often failed to reduce NormRD in
the NEGF runs. Instead, convergence was eventually reached
by using the Pulay algorithm [62]. In particular, we found it
convenient to adopt a three-step procedure: We first performed
the preliminary DFT calculation by the RMM-DIIS algorithm
until NormRD reached values smaller than at least 0.01; we
then switched to using the Pulay algorithm for a few runs
(about 10); we finally switched to the NEGF technique by
keeping the Pulay mixing scheme on. Interestingly, we also
observed that the number of steps necessary for convergence
did not always decrease by reducing NormRD to a much lower
value than 0.01 (Fig. 8).
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Jiménez, and E. Louis, Phys. Rev. B 69, 041402 (2004).

[14] M. Strange, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B
73, 125424 (2006).

[15] M. Strange, I. Kristensen, K. S. Thygesen, and K. W. Jacobsen,
J. Chem. Phys. 128, 114714 (2008).

[16] J. C. Cuevas, J. Heurich, F. Pauly, W. Wenzel, and G. Schön,
Nanotechnology 14, R29 (2003).

[17] R. Zhang, G. Ma, M. Bai, L. Sun, I. Rungger, Z.
Shen, S. Sanvito, and S. Hou, Nanotechnology 21, 155203
(2010).

[18] S. K. Nielsen, Y. Noat, M. Brandbyge, R. H. M. Smit,
K. Hansen, L. Y. Chen, A. I. Yanson, F. Besenbacher,
and J. M. van Ruitenbeek, Phys. Rev. B 67, 245411
(2003).

[19] S. K. Nielsen, M. Brandbyge, K. Hansen, K. Stokbro, J. M. van
Ruitenbeek, and F. Besenbacher, Phys. Rev. Lett. 89, 066804
(2002).

[20] K. Wu, M. Bai, S. Sanvito, and S. Hou, J. Chem. Phys. 141,
014707 (2014).

[21] K. S. Thygesen and K. W. Jacobsen, Phys. Rev. B 72, 033401
(2005).

[22] F. Pauly, M. Dreher, J. K. Viljas, M. Häfner, J. C. Cuevas, and
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