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Conformations and cryo-force spectroscopy of
spray-deposited single-strand DNA on gold
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Cryo-electron microscopy can determine the structure of biological matter in vitrified liquids.
However, structure alone is insufficient to understand the function of native and engineered
biomolecules. So far, their mechanical properties have mainly been probed at room tem-
perature using tens of pico-newton forces with a resolution limited by thermal fluctuations.
Here we combine force spectroscopy and computer simulations in cryogenic conditions to
quantify adhesion and intra-molecular properties of spray-deposited single-strand DNA oli-
gomers on Au(111). Sub-nanometer resolution images reveal folding conformations confirmed
by simulations. Lifting shows a decay of the measured stiffness with sharp dips every 0.2-0.3
nm associated with the sequential peeling and detachment of single nucleotides. A stiffness
of 30-35 N m~" per stretched repeat unit is deduced in the nano-newton range. This com-
bined study suggests how to better control cryo-force spectroscopy of adsorbed hetero-
geneous (bio)polymer and to potentially enable single-base recognition in DNA strands only
few nanometers long.
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ucleic acids (NA)! are among the most studied biomo-

lecules nowadays due to their biological relevance, but

also their nanodevice applications or computing?~4.
Control over nucleotide sequences as well as knowledge of their
folding properties has enabled the rational design of highly ela-
borate two- and three-dimensional DNA structures, the so-called
“DNA origami”™ programmed by Watson-Crick com-
plementarity®. These remarkable advances have been made pos-
sible by the accurate determination of nucleotide characteristics
beforehand, using noninvasive single-molecule manipulation
techniques, such as optical tweezers”~® or magnetic tweezers!®11.
Beside these approaches, force spectroscopy based on atomic
force microscopy (AFM) also allows direct measurements of
mechanical, adhesion!?, and tribological properties!3, as well as
visualizing self-assembly processes. So far, such force spectro-
scopic experiments on biomolecules have been conducted under
ambient conditions in solutions, mostly up to few tens of pico-
Newton tensile loads. Mechanical properties are then dominated
by thermal fluctuations and folding/unfolding of soft parts!4-17,
Only few AFM studies on long polymers strongly bound at both
ends reached the nN force level where thermal fluctuations are
largely suppressed!®. To the best of our knowledge, no features
attributable to sub-nanometer structural details have been
observed in force versus extension curves recorded under ambient
conditions.

Imaging of DNA has also been a long-term challenge.
Although numerous groups successfully visualized DNA branches
with impressive spatial resolutions in solution under ambient
conditions!?-22, the highest accuracy has been reached using
scanning tunneling microscopy (STM)/AFM imaging at cryo-
genic temperatures enabling reduced contamination?>-26. These
experiments further required efficient deposition techniques to
successfully transfer the macromolecules from solution onto a
substrate while maintaining UHV cleanliness standards?’-2°.
However, the characterization of adsorbed biomolecules at the
sub-nm level, specifically of DNA under such conditions?3, still
remains rather unexplored. Notably, the recent advances in fre-
quency modulation AFM3? under cryogenic conditions have
pushed spatial resolution of adsorbed molecules to the single-
bond level®!, while force spectroscopy enables complex manip-
ulations of single molecules at surfaces32-36,

Here, we demonstrate that dynamic AFM-based force spec-
troscopy in cryogenic conditions (5K) is a promising method
for characterizing the mechanics of single-strand DNA
(ssDNA) 20-cytosine oligomers down to the sub-nm level.
Similar to the advent of cryo-electron microscopy for structure
characterization of biosystems3’, further investigations along
this line could open avenues toward the integration of DNA
into solid nanodevices through biomechanical studies at this
level of precision.

Results

Real-space imaging of spray-deposited ssDNA. 20-Cytosine
ssDNA oligomers were electrospray-deposited at room tempera-
ture on the precleaned Au(111) kept in ultrahigh vacuum (UHV).
The surface was then annealed step by step up to a maximum
temperature Ty, of 500 K. After each step, the resulting struc-
tures were subsequently imaged at 5K using constant-current
STM. As shown in Fig. 1a, the surface morphology evolves from
large aggregates of several nanometers to 4-nm-long isolated
oligomers. Clusters of various dimensions are observed by
STMsimilar to previous results on ssDNA/Cu(111) deposited
using a pulsed-injection technique?>26. These structures are too
large (Fig. 1b) compared to the expected size of a single dehy-
drated ssDNA 20-mer (Fig. 1c). Before annealing, we therefore

suppose that a small amount of solvent molecules might also
surround single oligomers.

To promote solvent desorption from the gold surface, we step-
by-step annealed the surface that we later imaged by STM after
each step (Fig. 1a). This results in a decreased apparent size of the
“hydrated ssDNA clusters” (T = 340 K) as water molecules desorb
from the surface. At T=440K, only “dehydrated ssDNA
oligomers” are observed by STM with a length of about 4 nm
(Fig. 1d). Their overall size also corresponds to the structure of a
folded oligomer adsorbed on Au(111), as systematically predicted
by our simulations performed under different adsorption
conditions (see Supplementary Note 5) and superimposed top
views in Fig. 1b, d, e. When Ty, 2500K, these dehydrated
oligomers coalesce into several nanometer-long structures
(Fig. le). Sub-nm contrast could be obtained along individual
dehydrated oligomers and their assembly not only by STM, but
also by using constant-height AFM with CO-terminated tips3!
(Fig. 1d, e). In spite of the potential resolution below the
molecular level, the determination of the overall ssDNA
conformation is rather difficult.

Molecular dynamics simulations of ssDNA adsorption. Instead
of simulating the complex electrospray-deposition processes
which start and end up in charge-neutral species (see Supple-
mentary Note 1 and Supplementary Fig. 1), in all our simulations,
we considered a single ssDNA oligomer together with charge-
compensating counterions. For a comparison with Fig. 1b, a 20-
cytosine ssDNA oligomer generated from the canonical B-form!
(see Supplementary Note 2 and Supplementary Fig. 2) together
with 19 Na™ ions was inserted into a water droplet, equilibrated,
and then allowed to adsorb onto an unreconstructed Au(111)
surface at room temperature (see Supplementary Note 3). We
first used the ssDNA conformation fully embedded in water
(Supplementary Note 4 and Supplementary Fig. 4) that we
relaxed only considering the first three surrounding hydration
layers, i.e., within ~1 nm around the molecule corresponding to
1332 water molecules (see Supplementary Fig. 5). Within the first
10 ns of the simulation, the droplet size decreases due to the
surface tension causing a considerable folding of the ssDNA chain
into a compact structure of only 3-nm diameter (see Supple-
mentary Fig. 5). The hydration layer and the ssDNA folded
structure then remain stable during the rest of the 100-ns-long
simulation. Note that much less folding was observed if the chain
was completely immersed in water, having a total length of 6.4
nm (see Supplementary Fig. 4).

The droplet so prepared was placed 2 nm above the surface and
let free to adsorb (Fig. 2a). At the first stage of the adsorption, a
meniscus is formed between the hydration layer and the gold
surface, whereas, after the 100-ns-long simulation, the ssDNA
adsorbs folded directly on the gold surface, but is elsewhere
surrounded by its hydration layer. Compared to the free droplet
conformation, the ssDNA structure thus obtained is longer, which
is in agreement with the STM images of hydrated oligomers on Au
(111) (Fig. 1b). To test the effects of dehydration and thermal
annealing on the final adsorption configuration, starting from the
adsorbed hydrated ssDNA shown in Fig. 2a, we simulated (i) partial
water evaporation by annealing at 450 K (stage 3a in Supplementary
Fig. 6), (ii) the effect of removing all water molecules (stage 3b in
Supplementary Fig. 7), and (iii) by simulating the adsorption of a
single DNA strand at 400 K without any water molecules (stage 4 in
Fig. 1c and Supplementary Fig. 7). All adsorption simulations,
including stage 3 (hydrated ssDNA at 300 K) led to very similar
folded adsorbed conformations ~4 nm in size, in good agreement
with the prevalent experimentally observed structures after
annealing at 440K, as shown in Fig. 1.
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Fig. 1 ssDNA morphologies as a function of Au(111) annealing temperature. a Overview of STM images of spray-deposited ssDNA on Au(111) at room
temperature, after annealing at 340, 440, and above 500 K, respectively. b STM image of hydrated ssDNA after spray-deposition at room temperature.
¢ Top view of a representative ssDNA structure on Au(111) obtained from MD simulations performed in vacuum at 400 K (see stage 4 in Supplementary
Note 3). d STM image of a dehydrated single 20-cytosine ssDNA oligomer after 440-K annealing and the corresponding high- resolution constant-height
AFM image, both acquired with a CO-terminated tip. The structural model of c is superimposed on the STM image. e STM image of self-assembled
dehydrated ssDNA oligomers after 500-K annealing and the corresponding AFM image. All STM images were recorded at 5 K with =2 pA and V=-13
V. Properly scaled top views of the representative ssDNA structure are superimposed on b, d, e as a guide for the eye

The systematic nature of the findings can be traced back to the
direct ssDNA/Au(111) contact already established at 300 K before
dehydration. Concurrently with this direct contact, the interac-
tion of cytosine bases with gold also induces a systematic
flattening of the ssDNA structure. Indeed, most bases lie nearly
parallel to the surface, similar to optimum adsorption structures
for single-nucleotide bases on Au(111) computed in vacuum
using a nonlocal van der Waals density functional®8, and very
recently by MD simulations in vacuum and in water at 300 K3°.

The effect of thermally assisted diffusion of ssDNA on Au(111)
has been investigated with 500-ns-long MD simulations of two
adsorbed ssDNA at temperatures of 400 and 500 K (see stage 5 in
Supplementary Note 3). Diffusion and coalescence of the ssDNA
oligomers is observed only at T=500K (see Fig. 2b and
Supplementary Note 6) which is in agreement with the experimental
data. The oligomers preserve their folded adsorption characteristics
during diffusion without showing significant flattening of the
structure or unfolding. The side-by-side alignment of the molecules
is again consistent with the STM/AFM images of Fig. lc. The
relatively high corrugation of the final MD-simulated structures con-
firms the difficulty to capture the ssDNA conformation from
constant-height AFM images with CO-terminated tips (Fig. le).

ssDNA cryo-force spectroscopy. To investigate the mechanical
properties of ssDNA adsorbed on Au(111), we have attempted to

lift single oligomers from the surface (Fig. 1c, d). We used the
protocol introduced in refs. 3340 to pull off single polyfluorene
chains with the AFM tip. Experimentally, the tip was first gently
indented into Au(111) to sharpen its apex, and then approached
to one end of a selected oligomer until the tunneling current
suddenly increased, thus indicating a jump to contact. A retrac-
tion curve was then recorded slightly beyond the position where
the I, and Af dropped to their noise levels (see Supplementary
Fig. 7). The yellow dots shown in the inset of Fig. 3b was the point
at which the retraction process was initiated at a constant speed of
v=22pms~L The effective stiffness k= 2koAflfy (ko being the
deflection sensor stiffness and f; its resonance frequency)
decreases progressively from 23 to about 5Nm~! as the
tip-sample separation Z increases. This variation is interrupted
by narrow dips observed every 0.2-0.3 nm followed by an abrupt
drop to zero when the tip is approximately at 1.4 nm far from the
contact point, well below the length of one ssDNA oligomer in its
adsorbed conformation (4 nm in Fig. 2). The premature detach-
ment of the ssDNA from the tip (see Supplementary Notes 7 and
8) is confirmed by comparing STM images before and after the
lifting experiment showing the entire oligomer still on the surface
(inset Fig. 3b). Experimentally, only partial lifting of single
ssDNA oligomers either self-assembled or individually adsorbed
(see Supplementary Fig. 9) could be achieved. Thus, it appears
that the folded ssDNA conformation and its strong adhesion on
gold are the limiting factors of the experimental lifting. Indeed,
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a Spray deposition at room temperature

ssDNA diffusion at T= 500 K
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Fig. 2 Molecular dynamics simulations of adsorption and diffusion on Au(111). a Side- and top views of a small water droplet containing one ssDNA
oligomer getting adsorbed on the gold surface. Water is represented using a transparent surface. b Five-hundred nanosecond MD simulation of two
oligomers assembled by diffusion at 500 K (stage 5 of the simulation protocol—see Supplementary Notes 3 and 6). At 500 K, both oligomers start

diffusing, thus favoring self-assembly assisted by intermolecular interactions

desorbing a single-folded oligomer with the AFM tip requires not
only peeling off the structure from the gold surface, but also
unfolding part of the backbone prior to detachment. Each
peculiarity of the folding configuration can thus cause an abrupt
increase of the required force to lift the molecule and the rupture
of the tip-molecule bond.

Steered MD simulations*!42 have been run to shed light on the
experimental results (see Methods and Supplementary Note 3). A
representative theoretical retraction trace is shown in Fig. 3d. To
do that, a virtual “tip atom” was connected to the P atom of the
backbone between the first two nucleotides by a spring of stiffness
kyp representing the tip-molecule bond and was pulled up at a
constant speed of 0.1 ms~! at 5K (Fig. 3a). From the recorded
variations of the noise-averaged normal force (F(Z)) (Fig. 3c), the
effective stiffness was extracted as k=d (F(Z))/dZ (Fig. 3d), Z
being the distance between the tip atom and the pulled P atom at
t=0. In the simulations, the whole ssDNA oligomer detaches
from the substrate when the tip has been retracted up to Z,g=
11.8 nm, which is slightly less than its fully stretched length (see
Supplementary Fig. 8). In spite of the discrepancy with the
experimental value of Z. the measured maximum k values
exhibit a similar trend in the common Z-range (blue area in
Fig. 3d). Not only the stiffness k decreases from comparable initial
values of ~15-25 N m~!, but pronounced dips (coinciding with
abrupt force drops in the simulations) also appear at repeat
distances of about 0.2-0.25nm. Careful observation of the
configurations adopted by the ssDNA atoms during simulated
pulling reveals that the repeat distances reflect intermediate stages
(peeling, lifting, and detachment) in the successive lifting of
cytosine bases. These events are also accompanied by stick-slip-
like sliding of the adjacent base over the Au(111) surface (0.28-
nm lattice spacing) as well as irregular unfolding of the backbone.
Details of such dynamics can be better visualized in Supplemen-
tary Movies 1 and 2. Note that the first step of the lifting process
involves correlated base detachments and intricate unfolding,
which require increased lifting forces. This increase might explain
the premature detachment of ssDNA from the tip apex observed
experimentally. Similar observations have been reported at room
temperature in solution for grafted polymers!? and ssDNA
adsorbed on carbon nanotubes!”.

It is also remarkable that the computed k variations as a
function of Z are very different from those previously reported for

polyfluorene chains from Au(111) lifted with the same method33.
There, the k maxima (~0.4Nm~!) were constant during
retraction. The process ended at a distance corresponding to
the number of monomers initially identified by STM on the
surface. In that case (and also for graphene nanoribbons®4), the
much stiffer repeat units weakly adhere to the substrate, allowing
nearly frictionless sliding and a complete chain detachment. The
oligomer backbone is more flexible and most bases are strongly
bonded to the gold surface. As shown in our MD simulation
(snapshot of Fig. 3e and Supplementary Movies 1 and 2), the
cytosine bases that remain adsorbed do not slide during
lifting3334. As a result, the lifted segment between the tip and
the sample becomes essentially straight and inclined as the
tip—sample separation increases. This sequential base detachment,
similar to peeling off an adhesive tape, also reflects the strong
adhesion of adsorbed cytosine bases. Interestingly, “infinite” as
opposed to negligible friction was already detected for long
ssDNA chains in solution at room temperature when adsorbed on
gold!3 and graphite!?, respectively. Easy sliding of short ssDNA
oligomers on graphene under cryogenic conditions was recently
predicted by steered MD simulations®2.

The gradual reduction of the k maxima arises because the stiffness
of the lifted segment decreases as it becomes longer. Focusing on the
most pronounced k maxima achieved on the longest nearly linear
parts of F(Z), we assume local mechanical equilibrium in the
springs-in-series model applied earlier to polyfluorene chains and to
unzipped dsDNA hairpins. Including the stiffnesses kg and kpi, of
the segment ends anchored to the tip and to the adsorbed part of the
oligomer (Fig. 3e and Supplementary Fig. 9), the envelope of k
maxima is expected to satisfy

- [H”}l, 1)

kends kl
with
L1 1 )
kends ktip kpin .

k; being the stiffness per repeat distance b in fully stretched ssDNA
and n = int [Z/(b cos 0)] is the number of nucleotides detached from
the substrate in the range where the lifted segments are straight and
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Fig. 3 Mechanical response while lifting a ssDNA oligomer from Au(111). The oligomer is attached at one end to the AFM tip and pulled vertically at
constant velocity. a Schematic of the lifting simulations. b Experimental retraction trace, k(Z) « Af(Z) recorded at 4.8 K. ¢ Force-distance curve F(Z)
obtained from MD simulations assuming k¢, = 35N m~"and d the corresponding computed stiffness k(Z). The blue area shows the Z-range accessed by
the experiment. The red curve shows the fit to k maxima according to Eq. (1) with k;=32.6 3.9 Nm~, kpin=183%33N m~1, and b cosd = 0.64 £ 0.05. e
Side views of the ssDNA oligomer after lifting O, 10, and 17 nucleotides revealing the nearly straight configuration of the detached segment

inclined by 6 (almost 18° between n = 8 and 18 according to Fig. 3e
and the corresponding Supplementary Movies 1 and 2). The
resulting fit (red curve) is superimposed on the computed dF/dZ
trace in Fig. 3d obtained for kg, =35Nm~!. The resulting
parameters are k; =32.6+3.9 and k,,=183+33N m~L. This
confirms that ssDNA is strongly adsorbed and that fully stretched
ssDNA is much more compliant than polyfluorene3, presumably
because the stretched ssDNA backbone stiffness is dominated by
bond angle bending. As a consequence, kpya = k;/19 =17 Nm™!
would be the stiffness of the fully stretched 20-cytosine oligomer
with one base at each end subject to an average tension of ~2 nN.
This load is one to two orders of magnitude larger than the
maximum values attained in typical room-temperature investiga-
tions of ssDNA!214-17. We obtained only slightly different results
and fit parameters from independent simulations assuming higher
and lower kg, values (see Supplementary Fig. 10). In particular, Zug
ky, b, and the average tension in the fitting range did not change
appreciably.

The present work relies on closely matched scanning tunneling
and force measurements, and computer simulations. The first
part addresses the adsorption and self-assembly of single-strand
DNA cytosine oligomers spray-deposited on Au(111) at the sub-
nanometer level. Both theory and experiment showed folded
ssDNA conformations arising from the first step of the
adsorption. Furthermore, the unfolding of the ssDNA on the
surface is not possible upon annealing. In the second part,
the mechanical response of single ssDNA oligomers lifted from
the gold surface is investigated at the same level using cryogenic
force spectroscopy. Multistage detachment is inferred, similar to
peeling off an adhesive tape, and reflects the strong adhesion of
adsorbed ssDNA bases on gold. We extracted high values for the

initial stiffness measured during lifting (~15 N m~1), as well as a
comparable pinning stiffness obtained from numerical calcula-
tions and the intrinsic stiffness per repeat unit of fully stretched
ssDNA (~33 N'm~1). This last value corresponds to the stiffness
of the fully stretched 20-cytosine oligomer having a maximum
length of 12nm when subject to an average tension of ~2 nN.
This load is one to two orders of magnitude larger than those
applied at room temperature with single-molecule force spectro-
scopy on hundreds of nanometer-long ssDNA1214-17,

A drawback of the present system for experimental lifting is the
complex folding of the ssDNA oligomers in comparison to
polymeric systems in similar conditions3>34, This limits the lifting
heights to only a fraction of the extended length. Compared to
kpin=07Nm~! obtained for polyfluorene chains®3, a complete
detachment of ssDNA might be achieved by using end linkers
allowing to reinforce the bond between the oligomer and the AFM
tip in UHV. Although more difficult than solution chemistry, this
task appears feasible in view of the successful detachment of
PTDCA from Au(111) following contact to a carboxylic oxygen
atom32, In future experiments, we will focus on controlling the
adsorption of the ssDNA wusing, for example, appropriately
functionalized tips and patterned surfaces. We believe that such
strategy might enable the complete lifting of linearly adsorbed
oligomers and permit a meaningful statistical analysis of their
detachment. Another alternative is to perform measurements on
less adhesive surfaces*?. Nevertheless, our results suggest that
cryogenic force spectroscopy has the potential to study strongly
adsorbed biomolecules or similar nano-sized synthetic systems with
sub-nanometer resolution under tensile loads up to a few nano-
newtons, ie., 10-100 times higher than hitherto applied in most
single-molecule force spectroscopy studies under ambient
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conditions. Such studies might better characterize the diffusion
properties or enable single-base distinction.

Methods

Sample preparation and electrospray deposition. An Au(111) single crystal
purchased from Mateck GmbH was cleaned by several sputtering and annealing
cycles in a ultrahigh vacuum (UHV). The single-strand 20-mer DNA molecules
were purchased from Microsynth (Switzerland). The solution provided was sub-
jected to high-performance liquid chromatography (HPLC), thus ensuring that
only the organic molecules present were 20-cytosine ssDNA oligomers. Subse-
quently, dialysis was performed in the presence of an excess of NaCl which
guaranteed that any other salts generated during synthesis are exchanged by NaCl.
The delivered solution contained 14.7 nM of ssDNA and a NaCl concentration
sufficient to provide more than twice the required amount of Na™ neutralizing
counterions. This solution was further diluted to a concentration of around 1 nmol
ml~! in water and then sprayed in UHV (see Supplementary Note 1). Depending
on the applied voltage, the deposition time varies from 1 to 30 min at constant
solution flux controlled by a syringe pump with a speed of 2-10 x 10~¢ I min—1.
Further details on the electrospray-deposition apparatus and characterization can
be found in refs. 43-45.

STM/AFM microscopy. The STM/AEM experiments were carried out at ~5 K with
an Omicron GmbH low-temperature STM/AFM controlled by a Nanonis RC5
electronics. We used commercial tuning fork sensors in the qPlus configuration®, e.g.,
one prong-fixed, the other with an etched tungsten tip epoxied at the end (unper-
turbed frequency f, = 26 kHz, quality factor Q = 10000-25000 in UHV, and nominal
spring constant k = 1800 N m~1). These tips were sharpened by slight indentation
into the gold surface; some were then terminated by a CO molecule at the apex picked
up from the surface. All voltages refer to the sample bias with respect to the tip. The
constant-height AFM images were acquired with CO-terminated tips using the
noncontact mode by driving the free prong on resonance while maintaining a con-
stant tip oscillation amplitude A =50 pm. For such small oscillation amplitude, the
frequency shift Af induced by a smoothly varying force acting on the tip is to a good
approximation proportional to the gradient k (effective stiffness) of the conservative
force along the oscillation direction (perpendicular to the sample surface). The signal-
to-noise ratio is then nearly optimal®C.

Lifting experiments. Pulling experiments were performed under the same con-
ditions with gold-decorated tips while simultaneously recording the tunneling
current at a typical bias of 40 uV. The ssDNA oligomers were picked up by gently
pressing the AFM tip to the molecule at one of its extremities. Attachment of the
molecule to the apex is revealed by an abrupt jump in the force and current signals,
as shown in Supplementary Fig. 7. Force spectroscopic measurements upon
retraction were performed at a velocity of 22 pms~—L. In contrast to such mea-
surements on biomolecules in ambient conditions, the gradient of the force along
the oscillation direction rather than the pulling force itself is thus measured here.

Atomic-level models and force fields. In our simulations, we considered one Au
(111) slab composed of three atomic layers-thick slab, where the positions of the
atoms in the lowest layer are fixed during the MD runs using a harmonic restrain
of 5 kcal mol~!. Furthermore, we considered surfaces of two different sizes, i.e.,
16 x 16 nm? (Fig. 2 and Supplementary Fig. 5) and 18 x 22 nm? (see Supplementary
Fig. 6). The initial structure of the ssDNA molecule was generated using the
software NAB49, thus obtaining a double helix with the canonical B-form, as shown
in Supplementary Fig. 2. Then, we removed the complementary sequence and used
only one single-stranded 20-cytosine oligomer with the charged phosphate groups
in the backbone of the ssDNA and 19 sodium counterions. The ssDNA atoms were
described using both the parmbsc0%7 and the yOL3 refinements*® of the Cornell
£f99 force field*. The choice of this force field is motivated by its accuracy to
describe the mechanical properties of DNA>C as well as adsorption of biomolecules
to surfaces®!. The sodium counterions were described using the recently improved
Joung/Cheatham parameters®>%3, As for the gold atoms, we resorted to

the CHARMM-METAL force-field**%> which simultaneously describes the
intrinsic properties of gold, while retaining thermodynamical consistency with all
the other force fields used here>*%%. This force field has been extensively tested by
studying the adsorption of different peptides (charged and uncharged) against both
density-functional-theory simulations as well as available experimental results>*>>.
In the simulations performed in water (Fig. 2 and Suppl. Inf. Fig. S5), the water
molecules are explicitly modeled using the TIP3P force field®.

Molecular dynamic (MD) simulation details. MD simulations were carried out
using AMBERI14 software suite*® with NVIDIA GPU acceleration®’~>°. Periodic
boundary conditions and Particle Mesh Ewald (with standard defaults and a real-
space cutoff of 2 nm) were used to account for long-range electrostatic interactions.
Van der Waals interactions were truncated at the real-space cutoff, and
Lorentz-Berthelot mixing rules were used to determine the interaction parameters
between different atoms. In all vacuum simulations, the volume of the system was
kept fixed and the temperature was adjusted by means of a Langevin thermostat with

a damping rate of 1 ps~! ensuring fast thermalization with a minimal effect on the

fast slip dynamics. The SHAKE algorithm was used to constrain bonds containing
hydrogen, thus allowing us to use an integration time step of 2 fs. Coordinates were
saved every 1000 steps. In all our simulations, we observed that the final configuration
was stable as it did not change during the last 40 ns of simulations (which was
corroborated by the low, i.e., <0.2 nm, root-mean-square deviation). In the steered
MD simulation results shown in Fig. 3 and Supplementary Fig. 10, the conservative
force F(Z) was computed as kg, (Z — Zp) and its thermal average <F(Z)> was
approximated by a running average over (100 ps), an interval adjusted to obtain a
smooth dependence without distortions except close to force drops. The resulting d<F
(Z)>/dZ can be safely*! compared to the measured effective stiffness k between
negative slips in the intervals where k is positive.

Simulation protocols. In total, we have performed eight different MD simulations,
each labeled as a stage and described in Supplementary Note 3 and Supplementary
Fig. 3. Here we briefly outline each stage. Stage 1: ssDNA oligomer fully embedded
in water at 300 K. Stage 2: ssDNA inside a water droplet in vacuum at 300 K. Stage
3: Adsorption of a water droplet containing one ssDNA onto a Au(111) surface at
300 K. Stage 3a: Water evaporation at 450 K from the same adsorbed droplet. Stage
3b: Evolution of a fully dehydrated ssDNA adsorbed on Au(111) in vacuum at 400
K. Stage 4: Adsorption of a single DNA strand in vacuum onto Au(111) at 400 K.
Stage 5: Diffusion and self-assembly of two ssDNA molecules adsorbed on Au(111)
in vacuum at 400 and 500 K. Stage 6: Lifting a ssDNA molecule adsorbed on Au
(111) in vacuum at 5 K. In all simulations, 19 Na*t counterions per ssDNA
molecule were included to ensure overall charge neutrality.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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