Understanding the paradoxical mechanical response of in-phase A-tracts at different force regimes

Alberto Marin-Gonzalez¹, Cesar L. Pastrana¹, Rebeca Bocanegra², Alejandro Martín-González¹, J.G. Vilhena^{3, 4}, Rubén Pérez^{3, 5}, Borja Ibarra^{2, 6}, Clara Aicart-Ramos^{1*}, Fernando Moreno-Herrero^{1*}

¹Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain

²IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain

³Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

⁴Department of Physics, University of Basel, Klingelbergstrasse 82, CH 4056 Basel, Switzerland

⁵Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain

⁶Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología". 28049 Madrid, Spain

Supplementary Information

Supplementary Methods

Theory Model

Worm-Like Chain (WLC) Model

It is helpful to start with the simpler case of the WLC model. Here we will follow the notation and the derivation from refs (1,2). According to the WLC model, the bending energy of the polymer is given by

$$E = \frac{Pk_B T\theta^2}{2L} \tag{1}$$

where P is the persistence length; θ is the angle between the vectors tangent to the curve at two points separated by a distance L; T is the temperature; and k_B the Boltzmann constant. From this expression, the probability of finding a given bending angle is simply

$$\mathcal{P}(\theta) = \sqrt{\frac{P}{2\pi L}} e^{-\frac{P\theta^2}{2L}}$$
(2)

From here one can easily obtain the mean cosine of the bending angle, which is given by the following integral

$$<\cos\theta>_{WLC} = \int_{-\infty}^{\infty} d\theta\cos\theta \,\mathcal{P}(\theta) = e^{-L/_{2P}}$$
(3)

and then the mean squared end-to-end distance

$$< R^{2} >= \int_{0}^{L} ds \int_{0}^{L} ds' < \cos(\theta(s,s')) > = 2 \int_{0}^{L} ds \int_{0}^{s} ds' e^{\frac{-(s-s')}{2P}} = 4PL \left[1 - \frac{2P}{L} (1 - e^{-L/2P}) \right]$$
(4)

Intrinsically-bent WLC

For an intrinsically bent molecule, the minimum energy does not correspond to zero bending angle. Thus, we will assume that the intrinsic bending describes a circle of radius R_0 and curvature $a \equiv 1/R_0$. In this case, the energy reads

$$E = \frac{P_0 k_B T (\theta - aL)^2}{2L}$$
(5)

Then, the angle probability is

$$\mathcal{P}(\theta) = \sqrt{\frac{P_0}{2\pi L}} e^{-\frac{P_0(\theta - aL)^2}{2L}}$$
(6)

And the mean cosine can be obtained as

$$<\cos\theta> = \sqrt{\frac{P_0}{2\pi L}} \int_{-\infty}^{\infty} d\theta \cos\theta e^{-\frac{P_0(\theta - aL)^2}{2L}} = \sqrt{\frac{P_0}{2\pi L}} \int_{-\infty}^{\infty} d\theta \cos(\theta + aL) e^{-\frac{P_0\theta^2}{2L}} = \cos(aL) e^{-\frac{L}{2P_0}}$$
(7)

This expression is shown in the main text and was used to fit the A-tracts AFM data. The formula for the mean squared end-to-end distance can be derived in the same way as done for the WLC. In this case, one would need to solve the following integral

$$\langle R^{2} \rangle = 2 \int_{0}^{L} ds \int_{0}^{s} ds' \cos(a(s-s')) e^{\frac{-(s-s')}{2P_{0}}}$$
(8)

This integral is more cumbersome than for the WLC case, but can also be solved analytically yielding the expression shown in the main text

$$< R_{s,s+L}^2 >= \frac{2}{a^2 + b^2} \left\{ bL + \frac{1}{a^2 + b^2} \left[(a^2 - b^2)(1 - \cos(aL)e^{-bL}) - 2absin(aL)e^{-bL} \right] \right\}$$
(9)

with $b \equiv 1/(2P_0)$. Notice that by making a=0, one recovers the expression of the WLC, as required.

However, there is a more elegant solution to the problem. Realize that

$$<\cos\theta> = \mathcal{R}e\left\{e^{-\frac{L}{2P^*}}\right\}$$
(10)

Where $\mathcal{R}e$ denotes the real part and P^* is a complex number given by

$$P^* = \frac{P_0}{1 - 2iP_0 a}$$
(11)

The mean squared end-to-end distance is then obtained in a straightforward way, following the same rationale employed for the integrals of the WLC

$$< R^{2} >= \int_{0}^{L} ds \int_{0}^{L} ds' \mathcal{R}e \left\{ e^{-\frac{|s-s'|}{2P^{*}}} \right\} = \mathcal{R}e \left\{ \int_{0}^{L} ds \int_{0}^{L} ds' e^{-\frac{|s-s'|}{2P^{*}}} \right\} = \mathcal{R}e \left\{ 4P^{*}L \left[1 - \frac{2P^{*}}{L} \left(1 - e^{-\frac{L}{2P^{*}}} \right) \right] \right\}$$
(12)

This expression reveals that the mean squared end-to-end distance in the IBWLC is simply the real part of the one from the WLC when a complex persistence length is used. We will express this as

$$\langle R_{IBWLC}^2 \rangle = Re \langle R_{WLC;P \to P^*}^2 \rangle$$
(13)

Expanding Eq. (12) one arrives at Eq. (9).

Comparing the low-force response of A-tracts with the Tompitak et al. model (3)

To the best of our knowledge, the only model that explicitly contemplates the effect of A-tract curvature on the force response of DNA is the one by Tompitak et al (3). The main assumption

of the model is that intrinsically curved DNA is forming a spring-like structure (from now on a superhelix) with radius R and a helical rise per base pair s_0 . External forces stretch the superhelix similar to a spring, reducing the radius of the superhelix and increasing the extension:

$$F = \frac{(k_B T)^2}{\tilde{A}} \left[\frac{1}{4(1 - \frac{x}{L} + F/k)^2} - \frac{1}{4} + \frac{x}{L} - \frac{F}{k} \right]$$

where k is the effective constant of the superhelical backbone given by

$$k = k_B T \tilde{\gamma} - (k_B T)^2 \frac{\tilde{g}}{\tilde{C}}.$$

In these expressions, \tilde{A} , \tilde{C} and $\tilde{\gamma}$ are, respectively, the effective bending, twisting and stretching moduli of the superhelix; and \tilde{g} is the effective twist-stretch coupling. These parameters are given by

$$\tilde{A} = \frac{2rAC}{A+C-(A-C)r^2}$$
$$\tilde{C} = r(A-(A-C)r^2)$$
$$\tilde{\gamma} = \frac{r(C+(A-C)r)}{k_B T R^2}$$
$$\tilde{g} = \frac{(A-C)(b^2 - s_0^2)r^2}{b R k_B T}$$

where A and C are the persistence length and twisting modulus of the DNA; s_0 is the superhelical rise of the superhelix; and $r = s_0/b$, being b the distance between base pairs.

We tested this model against our data taking reference values considering the parameters in (3): b=0.34 nm, R = 8 nm, $s_0 = 0.15$ nm, A = 50 nm and C=100 nm. As shown in **Figure S6**, the model failed to describe the force-extension response over the full range of forces (**Figure S6A**). Only for forces lower than 0.1 pN we observed a reasonable description (**Figure S6B**). This limitation of the model is in agreement with the findings reported in the literature (3). Therefore, we conclude that, so far, there is no model that captures the force response of our A-tracts sequences over the range of forces studied.

Supplementary Tables

Fragment	Oligonucleotide	Sequence	
Intron	58.F Bam-Xho-Psi intron4	GCGTAAGTGGATCCCTCGAGTTATAACAGGTAGCGGAGAAATTG AAG	
	59.RApa-Eco-Sal intron4	ACTTACGCGGGCCCGATATCGTCGACGGTCCCTGTAAGAAATTT TAAAGG	
Control	89.F lambda 40002 Xhol	GCGTAAGTCTCGAGCCGGATGCGGAGTCTTATCC	
tweezers substrate	90.R lambda 45263 Apal	GCGTAAGTGGGCCCCGCAAGGATTGCCCCGATG	
Digoxigenin tailed oligos	Xbal-A	[pho]CTAGACCCGGGCTCGAGGATCCCC	
	88.Xbal C Apal	GGGGATCCTCGAGCCCGGGTCTAGGGCC	
Biotin tailed oligos	27P-Xhol-A	[pho]TCGAGCCCGGGCCATGGGATCCCC	
	26Xhol-B	GGGGATCCCATGGCCCGGGC	

Supplementary Table S1. DNA primers used in this work.

Supplementary Table S2. Sequence of DNA fragments used in this work. Groups or two or more consecutive adenines were highlighted in green and groups of two or more thymines are shown in red. All sequences are written from the 5' end.

Fragment	Size (bp)	Sequence		
		TCGAGTTATAACAGGTAGCGGAGAAATTGAAGAAAAATGGTCAAAAAATCGATGAAAAAC		
		CCGAAAAACTCACGAAAATTCATTAAAAATCTTAAAAATTGCTAGAAATTCGGAAAAATGC		
		CCAAAATTTTAGAAAATGTTTAAATATTCCTGAGAAAATGTCAAAAATACCGAAATTTAT		
		TAGTAAAATCTTGAAAAATTTTGCCAAAAATCTGGAAAAACCTGGAATTTTCGACTTTTTT		
		TTTCTAAAAGTTTCAAAATTCCCAAATAATCATTCAAAAAAAA		
		TCTAAAATTTTTGCGGAAATTTTGAAAAAATTCACTAAAAAATTGAAATATCCCCGGAAA		
		TTTCGAGAAAATCCAAAAATTTCGGAAAATACACAAAAATACCGGTTTTTGCTGAAAAAG		
		CACAGAAGTTTTGCGACAAAACCTTTAAAAAATCTGTAAAATCCCCCCAAAAATTTTCAAAT		
		TTTTTCTCGAAAAATTGCAAAAAATGTAAAAATTCCCCCAAATAATCCGAAAATCCAAAA		
		AAATTACCTAAAAAATCGGGAAAATTTTGAAAAAATCCCTGAAAAATTGTCGTAAAAATACCA		
		AAAATTTCGCTAAAAATCTGAAAAATTGCTAGAAATTCGAAAAAAATGCTTAAAATTTC		
		AGAAAATGTTAAAAAATTCCCAAAAAAACATGTAAAATCTTGAGAAAATGTCAAAAATACCG		
		AAATTTATTAGAAAAATCTGAAAACTCACTGACATTTTGCGAAAAATTCCGAAAATTGGT		
		ТААААААТТТТТТТААААААССТССАААТТТТССАААТТТТТТ		
		TTCCGAAAAATCCTTTAAAATTTCTTACAGGGACCGTCGAGTTATAACAGGTAGCGGAGA		
		AATTGAAGAAAAATGGTCAAAAAATCGATGAAAAACCCGAAAAACTCACGAAAATTCATT		
		AAAATCTTAAAAATTGCTAGAAATTCGGAAAAATGCCCAAAATTTTAGAAAATGTTTAAA		
		TATTCCTGAGAAAATGTCAAAAATACCGAAATTTATTAGTAAAATCTTGAAAATTTTGCC		
∆-tract		AAAAATCTGGAAAAACCTGGAATTTTCGACTTTTTTTTTT		
		AATAATCATTCAAAAAAAAAACTTTCTAAAAAATCTCTAAAAATTTTTGCGGAAATTTTG		
AFM	2636	AAAAAATTCACTAAAAAATTGAAATATCCCCGGAAATTTCGAGAAAATCCAAAAATTTCG		
substrate		GAAAATACACAAAAATACCGGTTTTTGCTGAAAAAGCACAGAAGTTTTGCGACAAAACCT		
		TTAAAAATCTGTAAAATCCCCCCAAAAATTTTTCAAATTTTTTCTCGAAAAAATTGCAAAAAA		
		TGTAAAAATTCCCCCCAAATAATCCGAAAATCCCAAAAAAATTACCTAAAAAATCGGGAAAAT		
		GCTTAAAATTTCAGAAAATGTTAAAAATTCCCCAAAAAACATGTAAAATCTTGAGAAAATG		

		TCAAAAATACCGAAATTTATTAGAAAAATCTGAAAACTCACTGACATTTTGCGAAAAATT CCGAAAATTGGTTAAAAAATTTTTTTTAAAAAACCTGGAATTTTCCAAATTTTTTTT
Control AFM 2645 Substrate Control AFM 2645 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		TCGACCCTGAAGATGATGTGCTGATGCGAGAAAGCGGCAGGGCTTGCCGGAGTGCCGCT TTGGCCCGGACGGAATGAAGTTATCCCCGCTTCCCCGATGTGGCGGACGTGACGGAG ATGACGTAATGCTGGTGTGTGTTTTATGATTCGGTGCGCAGGAGGAGTCGGGACGTGACGGAGT GCCAGAGCCAGGCGCATTTTTCTGGTACGGAAAGTGGCGAAAAAAACCAGCGCGAGT GTGAACGCGCATGCGTCGTCGTCTGCCCACGGGGCCGGGGCGGGGCGGGC
A-tract tweezers substrate	5316	GGGGATCCCATGGCCCGGGCTCGAGTTATAACAGGTAGCGGAGAAATTGAAGAAAAATGGTCAAAAAATCGATGAAAAACCCGAAAAACTCACGAAAATTCATTAAAATCTTAAAATCTCTAGAAATTCGGAAAAATGCCCAAAATTTTAGAAAATGTTTAAATATCCTGAGAAAATGTCAAAAATACCGAAATTTATTAGTAAAATCTTGAAAATTTGCCAAAAAATCCTGGAAAAACCTGGAATTTTCGAAATTTTTTTTTTTTTTTAAAAGTTTCAAAATTTGCCAAAAAATCCGAAAAAAAAAAAACTTTCTAAAAATCTCTAAAATTTTGCGAAAATTCCCAAATAACATCCAAAAAAAAAAATTCCCGGAAATTTCGAGAAAATCCGAAAATTTCGGAAAAATCCAAAAAAAACCGGTTTTGCGAAAAACCCGGAAATTTCGGAAAAATCCGAAAAATGCAAAAATCCGGAAAATCCCCAAAATTGACGTAAAAACCCAGAAGTTTCGGAAAAATGCAAAAATGCAAAAATCCCCAAAATTGCCGAAAATCCAAAAAATTCCGAAAAATGCAAAAATGCTAAAAATCCCCAAAAATTGCCGAAAATCCAAAAATTCCGAAAAATCCGAAAAATGCTAAAAATCCCGAAAATTCCCAAAAATCCCGAAATTCGCAAAAATGCTAAAAATCCCGAAATTCCGAAAATTCCCAAAAACCTGGAATTTTCCAAAAAATGCTTAAAAATACCGAAAATGTTAAAAATCCGAAAATCCGAAAATCCAAAAATCCCGAAATTTGCGAAAATTCCGAAAATTCCGAAAATTTTTTTAAAAAACCTGGAATTTTCCAAAATTTTTTTTTCCAAAATTCATTAAAAATTCCGAAAAATGGTCAAAAATCGATGAAAATCCGAAAATTCCGAAAATTCCCAAAAATCCCGAAAATTCCCAAAAATCCCGAAAATTCCCAAAAATCCCGAAAATTCCCCAAAAATCCCGAAAATTCCCCAAAAATCCCCAAAAATCCCGAAAATTCCCCAAAAATCCCCAAAAATCCCCGAAAATTCCCCGAAAATTCCCCAAAAATCCCCGAAAATTCCCCGAAAATTCCCCGAAAATTCCCCGAAAATCCCCAAAAATCCCCGAAAATTCCCCAAAAATCCCCAAAAATCCCCGAAAATTCCCAAAAATTTTTTTT

	1	
		AATGTTAAAAATTCCCAAAAAACATGTAAAATCTTGAGAAAATGTCAAAAATACCGAAAT
		TTATTAGAAAAATCTGAAAAACTCACTGACATTTTTGCGAAAAATTCCGAAAATTGGTTAAA
		GAAAAATCCTTTAAAATTTCTTACAGGGACCGTCGAGTTATAACAGGTAGCGGAGAAATT
		GAAGAAAAATGGTCAAAAAATCGATGAAAAACCCGAAAAACTCACGAAAATTCATTAAAA
		TCTTAAAAATTGCTAGAAATTCGGAAAAATGCCCAAAATTTTAGAAAATGTTTAAATATT
		ΑΤΟΤΟ GAAAAACOTO GAATTTTC GACTTTTTTTTTTTTTTTTTTTTAAAAGTTTCAAAATTCCCAAATA
		AATTCACTAAAAAATTGAAATATCCCCCGGAAATTTCGAGAAAATCCAAAAATTTCGGAAA
		ATACACAAAAATACCGGTTTTTGCTGAAAAAGCACAGAAGTTTTGCGACAAAACCTTTAA
		AAATCTGTAAAATCCCCCAAAAATTTTCAAATTTTTCCCGAAAAATTGCAAAAATGTA
		AAAATTCCCCCCAAATAATCCGAAAATCCAAAAAAATTACCTAAAAATCGGGAAAATTTTG
		ΑΑΑΑΑΤΟΟΟΤGΑΑΑΑΑΤΤGΤΟGTAAAAATACCAAAAATTCGCTAAAAAATCTGAAAAATTG CͲλGλλλΨΨCGλλλλλλασCCΨΨλλλλΨΨCCAGAλλλΨΨΨCAGAλλλΨΨΨCCCAλλλλC
		TGTAAAATCTTGAGAAAATGTCAAAAATACCGAAATTTATTAGAAAAATCTGAAAAACTCA
		CTGACATTTTGCGAAAAATTCCGAAAATTGGTTAAAAAATTTTTTTAAAAAAACCTGGAAT
		TTTCCAAATTTTTTTTTTCTAAAAATTAAAAAATTCCGAAAAATCCTTTAAAAATTTCTTAC
		AAAAATGCCCAAAATTTTTTAGAAAATGCTTTAAAATCTTAAAATGCTAGAAAATTCGG
		AAATTTATTAGTAAAATCTTGAAAATTTTGCCAAAAATCTGGAAAAACCTGGAATTTTCG
		ACTTTTTTTTTCTAAAAGTTTCAAAAATTCCCAAATAATCATTCAAAAAAAA
		AAAAAATCTCTAAAATTTTTGCGGAAATTTTGAAAAAATTCACTAAAAAATTGAAATATC
		ATCCAAAAAAATTACCTAAAAAATCGGGAAAATTTTGAAAAAATCCCTGAAAATTGTCGTAA
		AAATACCAAAAATTTCGCTAAAAATCTGAAAAATTGCTAGAAATTCGAAAAAAATGCTT
		AAAATTTCAGAAAATGTTAAAAAATTCCCAAAAAACATGTAAAATCTTGAGAAAATGTCAA
		TAAATIGGITAAAAAATITTTTTTAAAAAACUTGGAATITTCCAAATITTTTTTTTTTTCTAAAAA
		AGCGGAGAAATTGAAGAAAAATGGTCAAAAAATCGATGAAAAAACCCGAAAAAACTCACGAA
		AATTCATTAAAAATCTTAAAAAATTGCTAGAAATTCGGAAAAATGCCCAAAATTTTAGAAAA
		TGTTTAAATATTCCTGAGAAAATGTCAAAAATACCGAAATTTATTAGTAAAATCTTGAAA
		ATTTTCGCCAAAAATCTGGAAAAACCTGGAATTTTCGACTTTTTTTT
		AATTTTGAAAAAATTCACTAAAAAATTGAAATATCCCCGGAAATTTCGAGAAAATCCAA
		AAATTTCGGAAAATACACAAAAATACCGGTTTTTGCTGAAAAAGCACAGAAGTTTTGCGA
		CAAAACCTTTAAAAAATCTGTAAAAATCCCCCCAAAAATTTTCAAATTTTTCTCGAAAAATT
		GCAAAAAATGTAAAAATTCCCCCAAATAATCCGAAAAATCCAAAAAAATTACCTAAAAATC
		GGGAAAATTTTTGAAAAATCCCTGAAAAATTGTCGTAAAAAATACCAAAAATTCCGCTAAAAA TCTCAAAAATTCCCTACAAAATTCCCCTGAAAAATTGTCGTCGTAAAAAATACCAAAAATTCCGCTAAAAA
		TCCCAAAAAAACATGTAAAATCTTGAGAAAATGTCAAAAATACCGAAATTTAGAAAAA
		TCTGAAAACTCACTGACATTTTGCGAAAAATTCCGAAAATTGGTTAAAAAATTTTTTTAA
		AAAACCTGGAATTTTCCAAATTTTTTTTTTTTCTAAAAAATTAAAAAATTCCGAAAAATCCTTT
		AAAATTTCTTACAGGGACCGTCGAGTTATAACAGGTAGCGGAGAAATTGAAGAAAAATGG
		TCAAAAATACCGAAATTTATTAGTAAAATCTTGAAAAATTTTGCCAAAAATCTGGAAAAAC
		CTGGAATTTTCGACTTTTTTTTTTCTAAAAGTTTCAAAATTCCCAAATAATCATTCAAAAA
		AAAAAACTTTCTAAAAAATCTCTAAAATTTTTGCGGAAATTTTGAAAAAATTCACTAAAA
		AATTGAAATATCCCCCGGAAAATTTCCGAGAAAATCCAAAAATTTCGGAAAAATACACAAAAAT
		TCCCCCCAAAAATTTTCCAAATTTTTTCCCGAAAAATTGCAAAAAATGTAAAAATTCCCCCA
		AATAATCCGAAAAATCCAAAAAAATTACCTAAAAATCGGGAAAATTTTGAAAAAATCCCTGA
		AAATTGTCGTAAAAATACCAAAAATTTCGCTAAAAATCTGAAAAATTGCTAGAAATTCGA
		AAAAAAATGCTTAAAAATTTCAGAAAATGTTAAAAATTCCCAAAAAACATGTAAAAATCTTG
		TTTTTCTAAAAATTAAAAAATTCCGAAAAATCCTTTAAAATTTCTTACAGGGACCGTCGA
		CGATATCGGGCCCTAGACCCGGGCTCGAGGATCCCC
<u> </u>	1	GGGGATCCCATGGCCCGGGcTCGAGCCGGATGCGGAGTCTTATCCGTGGAAATCAAACGC
		GCACTACTGGCTGGTTACCAACCTGTATCAGAACATGCGGGCCAATGCGCTTACTGATGC
		GGAATTIACGCCGTAAGGCCGCAGATGAGCTTGTCCCATATGACTGCGAGAATTAACCGTGG
		TGCACAGGCTCTGGCGAAGATCGCAGAAATCAAAGCTAAGTTCGGACCTCTAAATCG
Control		TGTATGACGGGCAAAGAGGCAATTATTCATTACCTGGGGACGCATAATAGCTTCTGTGCG
tweezers	5316	CCGGACGTTGCCGCGCTAACAGGCGCAACAGTAACCAGCATAAATCAGGCCGCGGCTAAA
substrate		ATGCCACGGGCAGGTCTTCTGGTTATCGAAGGTAAGGTCTGGCGAACGGTGTATTACCGG
		CGCCAGAGTGCCGCGATGAAACGGGAAGGAAAGATGAGCACGACCTGGTTTTTAAGGAGTGT CGCCAGAGTGCCGCGCATGAAACGGGGTATTGGGCGCTATATGGAGTTAAAAAGATCACCATCT
		ACATTACTGAGCTAATAACAGGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGGGGGAGAG
		GGAAGTCATGAAAAAACTAACCTTTGAAATTCGATCTCCAGCACATCAGCAAAACGCTAT
1	1	TCACGCAGTACAGCAAATCCTTCCAGACCCAACCAATCGTAGTAACCATTCAGGA

	ACGCAACCGCAGCTTAGACCAAAACAGGAAGCTATGGGCCTGCTTAGGTGACGTCTCTCG
	TCAGGTTGAATGGCATGGTCGCTGGCTGGATGCAGAAAGCTGGAAGTGTGTGT
	ATTCGGTACAGAGCGTGGCGTTAAGTGGTCAGACGAAGCGAGACTGGCTCTGGAGTGGAA
	AGCGAGATGGGGAGACAGGGCTGCATGATAAATGTCGTTAGTTTCTCCGGTGGCAGGACG
	TCAGCATATTGCTCTGGCTAATGGAGCAAAAGCGACGGGCAGGTAAAGACGTGCATTAC
	GTTTTCATGGATACAGGTTGTGAACATCCAATGACATATCGG <mark>TTT</mark> GTCAGGGAAGTTGTG
	AAGTTCTGGGATATACCGCTCACCGTATTGCAGGTTGATATCAACCCGGAGCTTGGACAG
	GACAGATTAAAACTCGTTCCCTTCACCAAATACTGTGATGACCATTTCGGGCGAGGGAAT
	TACACCACGTGGATTGGCATCAGAGCTGATGAACCGAAGCGGCTAAAGCCAAAGCCTGGA
	ATCAGATATCTTGCTGAACTGTCAGACTTTGAGAAGGAAG
	CAACAACCATTCGATTTGCAAATACCGGAACATCTCGGTAACTGCATATTCTGCATTAAA
	ATGTACCGAGGAAGAATGTCGCTGGACGGTATCGCGAAAATGTATTCAGAAAATGATTAT
	CAAGCCCTGTATCAGGACATGGTACGAGCTAAAAGA <mark>TT</mark> CGATACCGGCTCTTGTTCTGAG
	TCATGCGAAATATTTGGAGGGCAGCTTGATTTCGACTTCGGGAGGGA
	GATGTTATCGGTGCGGTGAATGCAAAGAAGAAGATAACCGCTTCCGACCAAATCAACCTTACT
	GGAATCGATGGTGTCTCCGGTGTGAAAGAACACCAACAGGGGTGTTACCACTACCGCAGG
	CGTAAAAACCTTCAACTACACGGCTCACCTGTGGGATATCCGGTGGCTAAGACGTCGTGC
	GAGGAAAACAAGGTGATTGACCAAAATCGAAGTTACGAACAAGAAAGCGTCGAGCGAG
	TTAACGTGCGCTAACTGCGGTCAGAAGCTGCATGTGCTGGAAGTTCACGTGTGTGAGCAC
	TAAAGAACGCGAAAAAAGCGGAAAAAGCAGCAGAGAAGAAACGACG
	ACAGAAAGATAAACTTAAGATTCGAAAACTCGCCTTAAAGCCCCGCAGTTACTGGATTAA
	ACAAGCCCAACAAGCCGTAAACGCCTTCATCAGAGAAAGAGACCGCGACTTACCATGTAT
	CTCGTGCGGAACGCTCACGTCTGCTCAGTGGGATGCCGGACATTACCGGACAACTGCTGC
	GCACCAAAAGCGGAAATCTCGTTCCGTATCGCGTCGAACTGATTAGCCGCGCATCGGGCAGGA
	AGCAGTAGACGAAATCGAATCAAACCATAACCGCCATCGCTGGACTATCGAAGAGTGCAA
	GGCGATCAAGGCAGAGTACCAACAGAAACTCAAAGACCTGCGAAATAGCAGAAGTGAGGC
	AAAGACGGGAAAATGCACGCCATCGTCAACGACGTCCATCGCGGTCCATCGCGGTGGAGT
	GAAAGAGATGCGCTATTACGAAAAAATTGATGGCAGCAAATACCGAAATATTTGGGTAGT
	TGGCGATCTGCACGGATGCTACACGAACCTGATGAACAAACTGGATACGATTGGATTCGA
	TGGCTGGTTCTTTAATCTCGATTACGACAAAGAAATTCTGGCTAAAGCTCTTGCCCATAA
	AGCAGATGAACTTCCGTTAATCATCGAACTGGTGAGCAAAGATAAAAAATATGTTATCTG
	CCACGCCGATTATCCCTTTGACGAATACGAGTTTGGAAAGCCAGTTGATCATCAGCAGGT
	CGCGGACACGTTCATCTTTGGTCATACGCCAGTGAAACCACTCAAGTTTGCCAACCA AATGTATATCGATACCGGCGCAGTGTTCTGCGGAAACCACTAACATTGATTCACCTACACCA
	AGAAGGCGCATGAGACTCGAAAGCGTAGCTAAATTTCATTCGCCAAAAAGCCCCGATGATG
	AGCGACTCACCACGGGCCACGGCTTCTGACTCTCTTTCCGGTACTGATGTGATGGCTGCT
	ATGGGGATGGCGCAATCACAAGCCGGATTCGGTATGGCTGCATTCTGCGGTAAGCACGAA
	TGCAGAGATTGCCATGGTACAGGCCGTGCGGTTGATATTGCCAAAACAGAGCTGTGGGGG
	AGAGTTGTCGAGAAAGAGTGCGGAAGATGCAAAGGCGTCGGCTATTCAAGGATGCCAGCA
	AGCGCAGCATATCGCGCTGTGACGATGCTAATCCCAAACCTTACCCAACCCACCTGGTCA
	ATTAACGCATGATATTGACTTATTGAATAAAATTGGGTAAATTTGUCAUGAATGGCAACGATGACT
	TAATTCGCTCGTTGTGGTAGTGAGATGAAAAGAGGCGGCGCCTTACTACCGATTCCGCCTA
	GTTGGTCACTTCGACGTATCGTCTGGAACTCCAACCATCGCAGGCAG
	ATGCAATCCCGAAACAGTTCGCAGGTAATAGTTAGAGCCTGCATAACGGTTTCGGGATTT
	TTTATATCTGCACAACAGGTAAGAGCATTGAGTCGATAATCGTGAAGAGTCGGCGAGCCT
	GELLAGULAGTGUTUTUTUGTTGTGUTGAATTAAGUGAATAUUGGAAGUAGAACUGGAA CACCAAATGCGTACAGGCGTCATCGCCCCAGCAACACCACAACCCGAAGUAGACCCGGA
	GCCACTGTCTGTCCTGAATTCATTAGTAATAGTTACGCTGCGGCCCTTTTACACATGACCC
	TCGTGAAAGCGGGTGGCAGGAGGTCGCGCTAACAACCTCCTGCCGTTTTGCCCGTGCATA
	TCGGTCACGAACAAATCTGATTACTAAACACAGTAGCCTGGATTTGTTCTATCAGTAATC
	GAUCITITATTCCTAATTAAATAGAGCAAATCCCCTTATTGGGGGTAAGACATGAAGATGCC
	COTTGCGGGGCCCTAGACCCGGGCTCGAGGATCCCC

Supplementary Table S3. *eWLC mechanical parameters of control and A-tracts at 100mM NaCl using different fitting ranges.* The 100 mM NaCl OT data was analyzed in the context of the eWLC using different fitting ranges.

Fitting	Molecule	$P_{eWLC}(nm)$	<i>S</i> (pN)
Range			
10-45 pN	A-tract	44 ± 3	2400 ± 220
	Control	47 ± 4	1540 ± 90
10-40 pN	A-tract	43 ± 3	2470 ± 230
	Control	41 ± 3	1710 ± 110
5-45 pN	A-tract	36 ± 2	2960 ± 360
	Control	44 ± 2	1530 ± 90
5-40 pN	A-tract	36 ± 2	3080 ± 370
	Control	43 ± 1	1600 ± 100

Supplementary References

- 1. Rivetti, C., Guthold, M. and Bustamante, C. (1996) Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. *J Mol Biol*, **264**, 919-932.
- 2. Rivetti, C., Walker, C. and Bustamante, C. (1998) Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. *J Mol Biol*, **280**, 41-59.
- 3. Tompitak, M., Schiessel, H. and Barkema, G.T. (2016) Force responses of strongly intrinsically curved DNA helices deviate from worm-like chain predictions. *EPL (Europhysics Letters)*, **116**, 68005.

Figure S1. *Migration of control and A-tracts substrates in agarose gels.* 0.8 % agarose gel electrophoresis of AFM substrates (control DNA (2645 bp) lane 2 and A-tracts (2636 bp) lane 3), and central insert before ligation of the tailed oligos of magnetic and optical tweezers substrates (control, lane 4 and A-tracts, lane 5 (5272 bp)) were run 30 ng/lane). Lanes 1 and 6 correspond to 1 kbp DNA ladder. The electrophoresis was run at room temperature for 50 min at 90 V in the absence of intercalator and the gel was later stained with SYBR®Safe. The substrates containing the A-tracts migrated slower than one would expect on the basis of its length.

Figure S2. *Distribution of contour lengths of control and A-tracts molecules.* The data sets were fitted to Gaussian distributions. Mean values, number of molecules and errors are shown in **Table 1**.

Air, Mg²⁺ only

Air, Mg²⁺ and Ni²⁺

Control molecules

Liquid, Mg²⁺ and Ni²⁺

Control molecules

A-tracts molecules

Figure S3. Representative images of the control and A-tracts molecules using air AFM imaging with two different adsorption conditions, and liquid AFM imaging. The Z and XY-scales are the same for all the images and are indicated in the image located at the upper left corner.

Figure S4. *Distribution of bending angles at different contour lengths computed for control and A-tracts molecules.*

Figure S5. Comparison of the mechanical properties of control and A-tracts obtained using two different adsorption conditions in air AFM imaging (a, b) and using air and liquid AFM imaging (c, d). (a) $\langle cos\theta \rangle \langle L \rangle$ data for air AFM imaging using Mg²⁺ to adsorb the molecules (same data as in **Figure 2d**, main text) and using both Mg²⁺ and Ni²⁺. Only the fits of the Mg²⁺⁺ & Ni²⁺ data are shown here (the fits to Mg²⁺ can be found in **Figure 2d**, main text). The black lines are the fits of the control and A-tract to the WLC and IBWLC models, respectively. The values of the fitting parameters are shown in **Table 1**, main text. (b) Comparison between air AFM imaging $\langle R^2 \rangle \langle L \rangle$ (WLC for the control and IBWLC for A-tracts) using the parameters extracted from the fits in (a). (**c**, **d**) Same as (a, b) but comparing air (Mg²⁺ only) with liquid AFM imaging. For sample preparation, ions concentration and AFM imaging details see **Materials and Methods** section, main text.

Figure S6. Comparison of the WLC model and the Tompitak model for describing our magnetic tweezers force-extension data. a) Experimental A-tracts and control data and fits to the WLC model (**Eq. 7** main text) and to the Tompitak model (3). b) Detail of (a) at low forces. The improvement of the Tompitak model over the WLC was observed only at very low forces (< 0.1 pN). The curve for the Tompitak model considered the following values: superhelical radius R = 8 nm, superhelical rise $s_0 = 0.15$ nm, persistence length A = 50 nm and twisting modulus C=100 nm.

Figure S7. Average magnetic tweezers force-extension curves of A-tracts and control molecules at different NaCl concentrations. Average force-extension curves of A-tracts and control molecules obtained at different concentrations of NaCl. Error bars are standard error of the mean. The data were fitted to the WLC formula (Eq. 7, main text). The values of the fitting parameters are represented in **Fig. 3b, c** main text.

Figure S8

Figure S8. *Raw magnetic tweezers force-extension curves of A-tracts and control molecules at different NaCl concentrations.* Blue data correspond to A-tracts DNA molecules. Red data correspond to control DNA molecules. The number of molecules represented for each condition are indicated in **Table 1**.

Figure S9. Overstretching transition of control and A-tracts molecules. Representative forceextension curves showing the overstretching transitions of control (red) and A-tracts (blue) at forces ~60 pN.

Figure S10. Average optical tweezers force-extension curves of A-tracts and control molecules at different NaCl concentrations. Raw data was averaged using a running window of 100 points. All data sets were then fitted to the extensible WLC (eWLC) in the 10-45 pN force range. The data and the fit at 100 mM NaCl is the same as in **Fig. 4a**, main text. The values of the fits shown at 50 mM NaCl were L_0 = 1834 nm, P = 45 nm, S = 1440 pN and L_0 = 1828 nm, P = 48 nm, S = 2545 pN for the control and A-tracts, respectively; and the ones at 500 mM NaCl were L_0 = 1841 nm, P = 34 nm, S = 1675 pN and L_0 = 1833 nm, P = 35 nm, S = 2286 pN for the control and for the A-tracts.

Figure S11. *Raw optical tweezers force-extension curves of A-tracts and control molecules at different NaCl concentrations.* Blue data correspond to A-tracts DNA molecules. Red data correspond to control DNA molecules. The number of molecules represented for each condition are indicated in **Table 1**.