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Abstract: In spite of the unprecedented resolution provided by non-contact atomic force microscopy
(AFM) with CO-functionalized and advances in the interpretation of the observed contrast, the
unambiguous identification of molecular systems solely based on AFM images, without any prior
information, remains an open problem. This work presents a first step towards the automatic
classification of AFM experimental images by a deep learning model trained essentially with a
theoretically generated dataset. We analyze the limitations of two standard models for pattern
recognition when applied to AFM image classification and develop a model with the optimal depth
to provide accurate results and to retain the ability to generalize. We show that a variational
autoencoder (VAE) provides a very efficient way to incorporate, from very few experimental images,
characteristic features into the training set that assure a high accuracy in the classification of both
theoretical and experimental images.

Keywords: atomic force microscopy (AFM); deep learning; molecular recognition; variational au-
toencoder (VAE)

1. Introduction

Atomic force microscopy (AFM) [1] in combination with dynamic operation modes [2,3]
has become one of the key tools for imaging and manipulation of materials and biological
systems at the nanoscale. It took almost a decade for one of these modes, frequency-
modulation AFM, commonly known as non-contact (NCAFM), to fulfill the goal of achiev-
ing atomic or even subatomic resolution, as it was shown for the Si(111)-(7× 7) reconstruc-
tion [4,5] or point defects and adsorbates on oxides [6]. The latest NCAFM breakthrough,
the use of metal tips functionalized with a CO molecule at the tip apex, has provided
access to the internal structure of molecules with totally unprecedented resolution [7,8].
These high-resolution (HR) AFM images have allowed molecular identification of complex
organic compounds like the natural product breitfussin A, which results very difficult to
characterize with other techniques [9]. The NCAFM ability to address individual molecules
has paved the way for the identification of the intermediates (including radicals) and final
products generated in on-surface reactions, shedding light into the formation processes
and reaction pathways [10–13]. Moreover, NCAFM has been able to resolve more than a
hundred different types of molecules in one of the most complex and economically relevant
mixtures that exist: asphaltenes, the solid component of crude oil [14].

The main contrast mechanism for AFM with inert tips is Pauli repulsion [7]. This
repulsive force contribution arises because the electron densities of tip and sample over-
lap, resulting in increasing frequency shift—changes in the oscillation frequency of the
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cantilever holding the tip due to the tip-sample interaction—that are observed as bright
features in the constant height AFM images above atom positions and bonds, reflecting
the molecular structure. Increasingly accurate AFM simulation models [15–19] have been
developed to explain the observed image contrast in terms of the different contributions to
the tip-sample interaction. They have contributed to elucidate the influence of the electro-
static force [20,21], the role of the CO-metal tip charge distribution[19,22], and the interplay
of the short-range chemical interaction and electrostatics in bond order discrimination and
the imaging of intermolecular bonds [23]. In spite of the wealth of information provided
by NCAFM experiments and these advances in the interpretation of the observed contrast,
the unambiguous identification of molecular systems solely based on NCAFM images,
without any prior information, remains an open problem.

Artificial intelligence (AI) techniques, also known as machine learning (ML), have
demonstrated an extraordinary ability to differentiate patterns and perform predictions
with high accuracy in many different fields [24–27]. Recent innovations in GPU technology
have enabled the development of computer vision techniques [28–31]. These technological
breakthroughs supported the design and training of complex, multilayer convolutional
neural networks (CNN). Deep learning, based on the use of CNNs, has opened up the
prospect of providing machines with capabilities hitherto unique to human beings [32–35].
CNNs have indeed exceeded the early expectations, surpassing the human capacity in
tasks such as the identification of the content of photographs performed in the ImageNet
2012 Challenge, where the ResNet-152 model achieves a 3.57% top-5 error, while the human
one is 5%.

The main challenge in AI is to determine the complexity of the model (the number of
layers and the filters included in each layer) needed to strike the right balance between the
specialization needed for an accurate prediction [36–38] and the ability to generalize [39]. A
predictive model must contain only the required number of parameters (and no more) than
strictly necessary to perform the prediction. If the model has excessive degrees of freedom
for the complexity of the dataset, we run into overfitting , a well-known problem in deep
learning [38,40]. In overfitting, the model has acquired the ability to classify with very high
accuracy a limited set of data, but it is not able to generalize to slightly different data of the
same class [41,42]. The problem of overfitting arises naturally in the application of deep
learning to image recognition because images have to be represented in high dimensional
spaces (one dimension for each pixel in the image) [40,41]. The amount of data needed
to adjust the model parameters increases significantly with the space dimension. Even
with large training datasets, the model is so complex that we will be forced to show the
same data several times (training epochs) to the model in order to adjust its parameters.
The consequence is that the model will specialize in training data but will be unable
to generalize.

Together with the technical problems described above, the possible application of
deep learning to the problem of molecular identification based on AFM images has to
face two main challenges that are intrinsic to the technique: how to achieve chemical
identification within the molecule at the single atom level, and how to deal with markedly
non-planar, 3D structures. The last problem has been recently assessed by a combination
of AFM experiments and image simulations with machine learning in order to determine
partial 3D structures of small molecules [43]. The strategy is based on a neural network that
converts a stack of experimental constant-height AFM images taken at different tip-sample
distances into a generated “height map” that gives information on atom positions within
the molecule. Regarding single-atom identification, AFM chemical sensitivity has been
demonstrated for a few elements incorporated in planar semiconductor surfaces using
the maximum attractive force [44]. This attractive force regime is not accessible with CO
and other inert tips that experience a repulsive interaction with molecules. Other possible
strategies based purely on force spectroscopy are challenged by the fact that, at the tip-
sample distances explored in these experiments, the charge distribution on atoms of the
same element is different depending on their local bonding environment and the global
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molecular stoichiometry [23]. Elemental sensitivity can be boosted by identifying features
in the 2D images and 3D force maps that reflect the highly anisotropic spatial decay of
the molecular charge density and provide a way toward elemental identification [23]. For
example, the replacement of C–H groups by N atoms in a benzene molecule modifies the
charge density and locally distorts the image, with sharper vertices around the N atoms,
making the N distinct from the C atoms. On the other hand, linear features have been
linked with halogen atoms [9,23]. The ability of models based on CNNs to recognize these
features on AFM images has not been explored yet.

The goal of this work is to fill this gap with the development of a strategy to com-
bine high-resolution AFM imaging and machine learning in order to achieve molecular
identification. We focus on a set of quasi-planar molecules that spans relevant structural
and compositional moieties in organic chemistry. We describe how, from each of these
molecules, we build the necessary training dataset of 2D theoretical images, striking the
right balance to incorporate enough variation and to prevent overfitting.

Firstly, we show the limited performance of two well-established deep learning models
for image recognition [45,46] in their application to molecular classification based on AFM
theoretical images. Their limitations can be understood by analyzing the transfer of relevant
information across the different layers in the model. Based on this analysis, we develop a
specific architecture for molecular identification that shows an excellent performance in
its application to theoretical images. Finally, we test the model, trained exclusively with
theoretical images, with experimental images [47], trying to understand the differences
between experimental and simulated AFM images that hamper a proper classification. We
solve this problem with a variational autoencoder (VAE) [48,49] that allows us to generate,
from very few experimental results, a small set of images that incorporate some of their
characteristic features. The addition of this small set to the training process of our model
leads to an optimal identification.

2. Materials and Methods
2.1. The SPMTH-60 Dataset of AFM Images

The SPMTH-60 dataset mostly contains a collection of theoretical constant-height
AFM images built from a selection of 60 essentially flat organic molecules (see Figure 1)
whose structures were obtained from the PubChem web [50]. These molecules are mainly
benzene derivatives, including up to three hexagonal and pentagonal rings with planar
structure. The different classes of molecules represented in the dataset include 10 different
atomic species (C, H, N, P, O, S, F, Cl, Br, I), as shown in Figure 2. These molecules are
chemically grouped in polycyclic aromatic hydrocarbons (including benzene), simple
heterocycles, combinations of hydrocarbon cycles with the heterocycles and other aromatic
derivatives like halides. Although relatively small, this set includes some of the most
common structures and relevant chemical species in organic chemistry and poses some of
the fundamental challenges in molecular classification, like the discrimination among the
different halides in the same molecular structure.

AFM experiments are conducted on adsorbed molecules, whose structure and elec-
tronic properties may be affected by the interaction with the substrate. These changes,
together with different experimental conditions, lead to a significant variability in the
recorded AFM images, as shown in Figure 3 for three of the molecules considered in our
dataset: acridine, carbazole, and dibenzothiophene. In order to take into account these
effects, SPMTH-60 includes a set of images generated for each molecule containing 48 dif-
ferent configurations, that mimic the effect of the adsorption on the molecular structure. In
addition, we include simulations 168 different sets of AFM operation parameters for each
configuration (see Section 2.2 for details). Thus, the total number of simulated images for
each molecule is 8064 and they are generated in a 224× 224 pixels format suitable for the
standard image recognition models discussed below.
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Figure 1. Ball and stick representation of all the molecules included in the SPMTH-60 dataset. Carbon
(grey), hydrogen (white), nitrogen (blue), oxygen (red), sulphur (yellow), chlorine (lime), iodine
(purple), bromine (maroon), fluorine (green), and phosphorus (orange) atoms are represented by
color balls.

Most SPMTH-60 dataset simulations are calculated with a simplified version of the
full-density-based model (FDBM) [19,23] implemented in the latest release [51] of the probe
particle model (PPM) [16,52]. The details of this implementation are discussed in Section 2.3.
As described below, the FDBM model has been used for additional AFM simulations for
certain molecules in the dataset. The tip and sample electronic charge densities and the
sample electrostatic potential needed for the simulations with either the PPM or the FDBM
methods have been calculated using quantum first-principles calculations, using molecular
structures taken from the PubChem web-supported database of chemical compounds [50].
More details about the AFM simulations and first-principles calculations can be found in
following subsections.

As discussed below, machine learning models trained exclusively with theoretical
images completely failed in the classification of experimental images. We have augmented
our training data set with 540 images generated with a VAE from three experimental images
for acridine, carbazole, and dibenzothiophene taken from Reference [47] (see Figure 3). An
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additional set of 110 unpublished images [53]—68 for acridine, 11 for carbazole, and 31 for
dibenzothiophene—have been used for testing the different classification models. Some of
these images are also shown in Figure 3.

Figure 2. Theoretically simulated AFM images for different molecules. Each column displays three molecular structures
that give rise to very similar AFM images, making it extremely difficult for a human to identify them. Atoms are represented
with the same color code used in Figure 1.

Figure 3. Experimental images for acridine, carbazole, and dibenzothiophene [47,53]. Each row shows, for the same
molecule, the large variability introduced in the AFM images by different experimental conditions. This variability
represents a challenge for molecular classification based on AFM. The three images in the first column were reprinted with
permission from ref. [47]. Coppyright 2019 American Chemical Society. The rest of the images have been taken by Drs. P.
Zahl and Y. Zhang during their work [47] and kindly provided to us [53].

2.2. Molecular Orientations and Operation Parameters for AFM Simulations

AFM experiments are conducted on adsorbed molecules, whose structure and elec-
tronic properties may be affected by the interaction with the substrate. In order to take
into account these effects, SPMTH-60 includes a set of images for each molecule generated
with different molecular orientations, that mimic the possible effect of the adsorption. In
particular, we have applied 48 rotations arising from the combination of the following Euler
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angles: α = {0, 20, 40}, β = {0, 1, 2, 3}, γ = {0, 3, 6, 9} degrees. The z-axis is perpendicular
to the molecular plane, and α defines the rotation around this axis, while the angles β and γ
correspond to rotations around the two mobile axis that control the motion of the molecule
out of the original molecular plane. We use small values for β and γ in order to mimic
the adsorption configurations found when these molecules are deposited on substrates,
like Au, used in the real experiments. Since all the molecules considered here are flat and
possess some symmetry elements this choice with only 48 rotations is enough to properly
reproduce the usual experimental situations.

To ensure that SPMTH-60 reflects all the image variants of each molecule, we have
considered a variety of operational AFM settings for each of the rotated configurations
described above. As a result, a group of AFM images is provided for each of the molecules.
Namely, we have simulated each structure with 4 different values of the elastic constant
describing the tilting of the CO molecule (0.40, 0.60, 0.80, 1.00 N m−1), 6 different oscillation
amplitudes of the cantilever (0.40, 0.60, 0.80, 1.00, 1.20, 1.40 Å), and 7 different tip-molecule
distances of closest approach (2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40 Å). Consequently, SPMTH-
60 consists of 48× 168 = 8064 AFM simulations for each of the 60 molecules, resulting in a
total of 483,840 images with resolution 224× 224 pixels. We have trained the models in this
paper by splitting the dataset into training, validation, and test sets with 314.460, 120.960,
48.420 images, respectively, where all the molecules are equally represented (same number
of images) in each of these subsets.

2.3. AFM Simulations with the Approximate Version of the FDBM Model Implemented in the
PPM Suite of Codes

For the implementation of the FDBM model, the latest release of the PPM calculates
the electrostatic force field as a convolution of the neutral tip charge density—the difference
between the total density of the molecule and sum of the atomic densities of the C and O
atoms—and the electrostatic potential of the sample. In previous versions, a quadrupole
term was used to describe the electronic charge distribution of the CO molecule acting
as the tip [52]. On the other hand, the short-range chemical interaction is calculated as a
convolution of the electronic charge density of the sample with the total charge density of
the CO molecule [23], using a value of the exponent α = 1 in the convolution. Finally, van
der Waals forces are approximated by the attractive part of the Lennard-Jones potentials.
The approach of the tip to the sample is performed in steps of ∆z = 0.1 Å and the position
of the tip is relaxed in each step [52].

2.4. First-Principles Calculations

The simulations for both the electronic charge density and electrostatic potential
of each structure and the charge density of the CO molecule acting as the tip were are
based on density functional theory (DFT) following the implementation provided in the
VASP code [54,55]. An energy cut-off for the plane-wave basis set of 400 eV was used
in combination with pseudopotentials constructed after the PAW method [56,57]. The
Perdew–Burke–Ernzerhof functional [58] was chosen to reproduce the electronic exchange
and correlation, supplemented by the D3 semi-empirical correction to account for the
dispersion interactions [59].

The bare molecules were subjected to single-point calculations (electronic self-consistency)
using the geometries provided in the PubChem web [50]. In few cases we performed a full
relaxation of the molecules on a Au(111) rectangular substrate containing three layers and
a total of 108 gold atoms. In all cases, the VASP outputs were rewritten into xsf format with
the xsfConvert modular code in order to use them in the PPM code.

3. Results and Discussion
3.1. Standard Deep-Learning Models for Image Classification

The idea of providing a machine with the ability to classify images is one of the main
challenges in machine learning and has fostered a significant amount of work in recent
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years. Deep learning techniques, in particular convolutional neural networks (CNN) archi-
tectures, have played a key role in this effort and several models based on this paradigm
have achieved remarkable results. We have applied two of these models, MobileNetV2 [45]
and VGG16 [46], to our dataset in order to verify its performance in the task of molecular
classification based on AFM images. See details Appendix A for the implementation and
training of the models.

3.1.1. MobileNetV2

MobileNetV2 [45] is an extremely deep architecture with a very large number of
blocks, each composed of multiple layers, that include a large amount of filters. This
complexity pays off and truly outstanding results are obtained in different classification
tasks. There are two key quantities to determine the performance of the model: the loss
and accuracy metrics. Accuracy represents the fraction of the images that were correctly
classified. The loss function estimates the model error at each iteration of the optimization
process comparing the predictions of the network and the true target. This information
is used to update the weights in order to reduce the error in each evaluation. We use
as loss function a multi-class cross-entropy loss, which is the preferred option under the
inference framework of maximum likelihood [60]. When MobileNetV2 is applied to the
SPMTH-60 dataset, the evolution of the loss and accuracy metrics as a function of the
epochs of training and validation (see Figure A2) shows that the model quickly runs into
overfitting, reflecting that it has excessive degrees of freedom to address this classification.

In order to avoid overfitting, we have employed different common procedures: we
have halved the number of filters in each layer, applied a strong image data augmentation
to the training set (see Appendix A.1 for a description of the augmentation strategies), and
stopped the training at a very early stage (at epoch 17, see Appendix A.2 for details) [61].
With this strategy, MobileNetV2 reaches a high accuracy in the classification of purely theo-
retical images. However, as shown in Table 1 and discussed in more detail in Section 3.3, it
completely fails with experimental images of some of the molecules included in the dataset.
Given the flexibility provided by the large number of parameters and its proven efficiency
in image classification tasks with other image datasets, our results indicate that this model
is not suitable for the classification of AFM images of SPMTH-60.

Table 1. Results achieved in the classification of 110 experimental images for acridine (ACR), car-
bazole (CAR), and dibenzothiophene (DIB) by the two standard models, MobileNetV2 (MNtV2)
and VGG16, and the ML-AFM model developed in this work (see Section 3.2). Support refers to the
number of images of each molecule included in the testing set. The column labelled “simulations”
shows the results for the corresponding model trained only with theoretical simulations, while “VAE”
corresponds to the results when the training set also includes the 540 images generated from only
three experimental images with the VAE described in Section 3.3. This small enlargement, just 0.17%,
improves significantly the performance of the standard models and confers our ML-AFM an accuracy
closer to the one achieved with theoretical images.

Simulations VAE

Molecule Support MNtV2 VGG16 MLAFM MNtV2 VGG16 MLAFM

ACR 68 0.06 0.08 0.82 0.80 0.82 0.96
CAR 11 0.00 0.00 0.45 0.45 0.72 0.72
DIB 31 0.00 0.00 0.62 0.19 0.74 0.90

3.1.2. VGG16

Learning from the results obtained with MobileNetv2, we have applied the VGG16
architecture [46] to the SPMTH-60 dataset. This is a much simpler model than MobileNetV2
(see Figure 4), developed specifically to treat 2242−pixel images and sequentially composed
of five convolutional blocks with multiple 3× 3 kernel-sized filters (see Figure A4 for
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examples) and one fully connected block ending in a probability vector (of length equal to
the number of classes) that relates each vector component to a class defined in the dataset.

Figure 4. (a) The VGG16 architecture combines five blocks, each composed by a series of convolution
(yellow), pool (red), flatten (purple), and fully connected (brown) layers, in order to reduce the initial
input, a 224× 224 image, into a probability vector with the size of the number of different classes (see
ref. [46] for a definition of these layers). (b) Representations of the filter patterns learned by some of
the convolutional layers of the VGG16 model during the training with SPMTH-60 dataset. From top
to bottom, each row includes four filters located in the last convolutional layer of blocks 2, 3, 4, 5,
respectively. Although the patterns in blocks 4 and 5 show specific features in the AFM images such
as ring deformations, those on block 3 display non-specific features that are usually learned in the
first layers of the model. Only random patterns can be observed in the last layer of block 2. Since the
filters are modified by applying back propagation, none of the filters belonging to the first two blocks
have been updated during the training, a clear indication that the model is in overfitting.

In the VGG16 training with SPMTH-60, it has been necessary, as in the case of Mo-
bileNetV2, to increase the image features of the training set by applying an image data
augmentation (Figure A1) in order to prevent overfitting. Under these conditions, the loss
and accuracy metrics behave reasonably well (see Figure A3), reaching, after 60 epochs of
training, an 0.99 accuracy with the testing set. However, when confronted with experimen-
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tal images, we obtained another dramatic failure (see Table 1), indicating that this model
has also over-fitted.

In order to understand the performance of VGG16 in the AFM image classification,
we carried out a visual representation of the learning achieved by different filters located
in different blocks. Figure 4b shows in each row four filter patterns included in the last
convolutional layer of blocks 2 to 5 in the VGG16 architecture. Each of these filter patterns
represents an image that maximizes the activation of a selected filter. A filter is activated
when its associated kernel—a defined pattern in a small group of neighboring pixels
designed to capture some specific characteristic of the images (see Figure A4 for some
common examples and Reference [60] for a detailed description)—matches some part of
the image that the filter is processing. Our initial guess for the input image is simply a
grayscale image built from random noise. Then, we applied an iterative procedure (based
on the gradient ascent [60]), to modify the input image in order to maximize the activation
of a particular filter. The images shown in Figure 4b are the final output of this process.

At this point, we should recall the basics of the back propagation algorithm used in the
training of deep learning architectures. During training, the model performs a prediction
resulting in a probability vector. If this prediction is not equal to the target label, this
error is propagated from the output layer (the last layer in the model) backwards. The
error propagation method calculates the gradients of the loss function computing the chain
rule for derivatives to determine the contribution of each neuron in the previous layer to
the error and to modify its parameters accordingly. Considering that the depth of a deep
learning model like VGG16 is 16 layers (13 convolutional and 3 fully connected layers,
Figure 4a, this backpropagation algorithm mostly modifies the deepest layers (those closer
to the output layer) while the influence of the first layers on the error reduction is very
slight. This is the key to understand why the first layers learn low-level features and
their filters remain generic, while the deepest layers specialize in high-level features (See
Figure A4).

These ideas are the key to understand the results shown in Figure 4b. Looking at
the last two rows, the patterns corresponding to blocks 4 and 5 show specific features
in the AFM images, such as ring deformations. The patterns associated with the last
convolution of the third block display non-specific features that are usually learned in the
first layers of the model. The filters of the last layer of the second block show random
patterns, a clear indication that they have not been updated. Since the filters are modified
by applying backpropagation, it follows that none of the filters belonging to the first or
second blocks have been updated during the training process. These results conclusively
prove that, despite having applied an image data augmentation to the training set, the
VGG16 architecture contains more parameters than those that strictly required to perform
the prediction. This scenario is a clear indication of overfitting.

In summary, we have shown that two of the best standard models for automatic
image classification do not perform well with the SPMTH-60 dataset and lead to overfitting.
Among the reasons for their limited performance, we can point out the following: Both
models have been tested with larger datasets composed by color images (with three
different channels to represent the color, RGB or any of the alternatives), while AFM
data, and correspondingly SPMTH-60, is composed by grayscale (single channel) images.
Secondly, standard datasets contain hundreds of classes while the SPMTH-60 dataset is
composed by only 60 different classes. Finally, AFM images share rather similar features,
i.e., the basic features in the AFM image of a benzene are not substantially different from
the ones for anthracene, and this also applies when comparing pyridine and pyrimidine.
In the task of discriminating between these images is not so important that different filters
are activated but that the same filters are activated in different areas of the image (See
Figure A4).



Nanomaterials 2021, 11, 1658 10 of 22

3.2. Our ML-AFM Model

The analysis carried out for MobileNetV2 and VGG16 models shows that standard
architectures for image classification run into over-fitting before enough features are learned
and generalized to classify AFM experimental images. We have developed a specific
machine learning model, the ML-AFM model (Figure 5) for this classification. The model
includes convolution, pool, dropout, flatten, and fully connected layers as VGG16, but is
designed with particular emphasis on preventing overfitting by a combination of different
strategies, such as (i) an optimal number of convolutional layers and filters and the use
of concatenation between them in order to introduce alternative paths—different ways
provided by the model in order to link the input and output layers of the model—(ii)
the presence of dropout layers, and (iii) the regularization in convolutional layers (See
Appendix A.4). Table A1 provides a complete description of each layer in the model.

Figure 5. ML-AFM model architecture designed to capture the characteristics of AFM images and to prevent a too
specialized training (overfitting) in AFM image classification. The model combines five blocks, each of them with a series
of different layers such as convolution (yellow), pool (red) , dropout (blue), flatten (purple), and fully connected (brown)
layers. Table A1 provides a detailed description of each layer, including the number and characteristics of all the filters.

In order to prevent overfitting, the first two blocks of our model (Figure 5) provide
branches through either a pool layer or a series of convolutional layers. The same goal
motivates the presence of the branches in the third and fourth blocks, where each branch
has a different depth, and, thus, can fit their filters to specialized or to general features.
Deep learning models need enough depth—the number of convolutional layers between
the input and output for a given path—to specialize in the classification. According to our
analysis of the performance of VGG16 (see Figure 4), a minimum of nine (and a maximum
of 12) convolutional layers were updated during the VGG16 training. Therefore, we have
implemented model paths with a depth of twelve convolutional layers (see Figure 5).
Each convolutional layer contains several filters and each filter specializes its kernel in a
particular kind of detection. Since we are dealing with grayscale images, and AFM images
shared rather similar patterns, our model has few filters in each layer (Table A1) compared
with the standard classification models [45,46] developed to perform color (three-channel)
image classification.

The goal of a dropout layer is to turn off randomly chosen neurons at each epoch
during the training. This technique ensures that the model does not assign a specific path
for each input, making the model robust and preventing overfitting [41]. We have located
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these layers at the beginning of each block, a place in the model common to all of the paths
and where, therefore, all information converges.

Finally, we introduce a strong regularization in the ML-AFM model. We have added
regularization kernels (using the L2-norm) to some key layers of the model (See Table A1).
The purpose of these kernels is similar to the one described for the dropout layers, but they
act in a different way: they introduce regularization by penalizing the layer parameters
during backpropagation by incorporating errors into the loss function that optimizes
the network.

The training of the model includes, as for the standard models, an image data aug-
mentation (Figure A1), and is performed with an Adam optimizer [62]. The training is
carried out up to 130 epochs. The loss and accuracy metrics for the training and validation
are shown in Figure A5.

The prediction of the ML-AFM model with the theoretical test set is as accurate as
the one obtained with the standard models (0.99 accuracy). However, when considering
the performance with the set of experimental images described at the end of Section 2.1
(see Figure 3), while the standard classification models fail dramatically, our model retains
a reasonable accuracy, between 0.45 and 0.82 depending on the molecule considered
(see Table 1). The implications of these results are clear: The standard models cannot
generalize the classification. They have overspecialized in the clean features displayed
by theoretical images and fail completely when confronted with the noisier experimental
images. On the other hand, our ML-AFM model achieves acceptable results, with the same
training based only on theoretical simulations, due to the emphasis placed in its design to
prevent overfitting.

3.3. A Variational Autoencoder (VAE) to Improve the Classification of Experimental AFM Images

The limitations of our ML-AFM model in the classification of experimental AFM
images discussed above have prompted us to explore different ways to improve our
training set. It is clear that experimental images have some characteristic features that
are not captured by simulations. Differences between experimental and theoretical AFM
images for a given molecule could be due to the approximations made in the simulation of
AFM images, or to the fact that molecules relax and deform due to the interaction with the
substrate, while we are considering ideal, gas-phase structures in the simulations. In order
to cope with the first issue, 36 AFM images calculated using more sophisticated simulation
methods [19,23] have been added to our training set for each of the three molecules in
the experimental test. They represent different AFM operation conditions: six tip heights,
three oscillation amplitudes and two different values for the CO tilting stiffness. We have
also included simulated images of the same molecules adsorbed on Au(111) after a full
relaxation using DFT. None of these attempts have resulted in a substantial improvement
in the classification of the experimental images.

In what follows, we discuss how to augment our training data set including images
with features similar to those found in the experiment generated with a variational autoen-
coder (VAE) [48,49] in order to improve significantly the performance. An autoencoder is
an unsupervised neural network composed by two neural networks called encoder (input
compression) and decoder (decompression). The encoder produces a representation of the
input data in a low dimensional vectorial space (code space). The decoder uses a point of
the code space (compressed representation) as input and generates an image as close as
possible to the encoder input. Our implementation (see Figure 6b) uses a variant called
variational autoencoder that adds a probabilistic contribution to the code space turning it
into a latent space (a code space with probabilistic distributions).

Autoencoders have been used for different purposes such as image denoising [63],
image segmentation [64], reconstruction of deleted areas of images [65] and data augmen-
tation [66]. In our case, the goal of the VAE is to incorporate characteristic features of
the experimental images to produce new elements for our training set. The encoder not
only represents each input image as a compressed representation in the latent space, a
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three-dimensional (3D) vector in our case, but also clusterizes it attending to similar image
features, distributing the inputs of each class in the same area of the latent space. Then, each
point of the latent space can be used as input for the decoder, that produces a reconstruction
of the input image. (See Figure 6). In order to add experimental features to the training set,
we project an experimental image for a given molecule into a compressed representation
(a 3D vector) in our latent space. Adding a small noise ε from a normal distribution to
each of the components of this vector (Figure 6b), we generate new points around the
representation. Feeding the decoder with one of these points, we obtain new images for
that molecule, that retain the characteristic features of the experimental images, and can be
incorporated into the training of the classification model. Details of the dimensions of the
VAE layers and training can be found in Appendix A.5.

Figure 6. (a) Images of (from top to bottom) acridine, carbazole, and dibenzothiophene. From left
to right, each image corresponds with the experimental AFM image used for the projection into
the latent space, the theoretical simulation, and one of the images generated by the VAE. (b) VAE
architecture, showing the flatten (purple), fully connected (brown), and the lamdba (khaki) layers.
The lambda layer represents the latent space, where noise from a normal distribution is added to
the projection produced by the encoder in order to generate, through the decoder, a new image that
include features characteristic of the experimental images.

The VAE has to be trained with theoretical images. Our results show that, in order to
endow the VAE with the ability to reflect the characteristic features of the experimental
AFM images, it is necessary to ensure that the training images reflect details that are absent
from the the simulations of the isolated molecules. Simulated images for the relaxed
structures obtained with DFT for these molecules upon adsorption on Au(111) slab have



Nanomaterials 2021, 11, 1658 13 of 22

been used to replace the images obtained from the isolated structures. In addition, we
have applied an augmentation using the image data generator (IDG) (see Appendix A.1 for
details) during the training of the VAE. To enable the autoencoder to learn the deformations
applied, these deformations must be identical for the input and output. The combined effect
of these two techniques enables the model to perform an accurate and robust reconstruction
of the experimental images (Figure 6a).

We have applied the encoder to three experimental AFM images, one for each of the
molecules acridine, carbazole, and dibenzothiophene (left column of Figure 6a), and save
their representation in the latent space. Then, we randomize the selection of 180 points
around each of this representation following a normal distribution. Finally, we use each of
these points as an input for the decoder network, generating new images. In this way, we
incorporate 3× 180 = 540 new images into their respective classes in the training subset of
the SPMTH-60 dataset, up to a total of 315.036 images. We have retrained the two standard
classification models, MobileNetV2 and VGG16, and our own ML-AFM model with this
slightly extended training set. Their performance in the classification of experimental
images is shown in Table 1. Standard models improve significantly their performance, but
they are still limited due to overfitting. Meanwhile, ML-AFM is able to almost recover the
accuracy achieved in the classification of theoretical images. We have accomplished this
feat with the addition of just 0.17% experimental-like images, generated from only three
real experimental images through our VAE, to the training dataset.

4. Conclusions

Our results show the potential of deep learning models trained with theoretical simula-
tions for a classification of molecular species based on constant height AFM images. To this
end, we have developed the SPMTH-60 dataset, generated from a selection of 60 essentially
flat organic molecules that includes some of the most common structures and relevant
chemical species in organic chemistry. Considering, for each of these molecules, 48 different
molecular orientations to capture the possible effect of adsorption and 168 combinations of
AFM operation parameters (average tip height, cantilever oscillation amplitude and CO
tilting stiffness), we have built a total dataset of almost half a million images, that we split
into training, validation, and test sets with 314.460, 120.960, 48.420 images, respectively.

Standard models for image classification with different complexity like MobileNetV2
and VGG16, trained and tested with the SPMTH-60 dataset, do not perform particularly
well. With the use of a combination of different strategies during training, including the
reduction in a number of filters and the application of a strong image data augmentation,
they can achieved a high accuracy in the classification of theoretical images, but failed dra-
matically when confronted with experimental AFM images. Our analysis of the activation
of some filters in different blocks of the VGG16 architecture indicates that the model has
run into overfitting: it has too many parameters and some of their filters in the deeper
layers have specialized excessively during the training while others in the first ones remain
completely random.

Standard models do not work with SPMTH-60 dataset as they are not suited to
the grayscale information and to the small set of common features that dominate AFM
molecular contrast. A properly designed model, like our ML-AFM, with the optimal depth
and incorporating different paths for the data, provides the necessary flexibility to avoid
overfitting and to achieve the training necessary to produce a successful classification.
When posed with experimental images, ML-AFM performs rather well, but does not
achieve the accuracy demonstrated with theoretical images. However, we have shown that
it is possible to design a VAE to generate, from very few experimental images, a small set
of AFM images to incorporate characteristic features of the experiments into our training
dataset. The ML-AFM model, trained with this set composed mainly by theoretical images
and enlarged with very few experiment-like images (just 0.17% of the total training set)
is able to succeed with almost equal accuracy in the classification of both theoretical and
experimental images.
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Looking back at the theoretical and experimental AFM images shown in Figures 2
and 3, it is possible to grasp the challenge that the molecular classification based on AFM
images represents. We have shown that deep learning techniques provide a successful
classification even in cases where it would be really hard for the human eye, such as
discriminating among molecular structures that only differ in the nature of one halogen
atom—extremely difficult to grasp even in purely theoretical AFM images—and coping
with the large variations observed in experimental images of the same molecule, quite
different in size, orientation, and internal contrast.

From this perspective, this work represents a promising step but we need to be aware
of the problems ahead. Our classification has been restricted to 60 different molecular
structures. If the model is confronted with an image that does not belong to any of the
classes in the dataset used in the training, the output of the model will be still one of
those 60 classes, and, thus, wrong. New strategies, probably based in the identification
of the number and location within the molecule of atoms belonging to different chemical
species, are needed to generalize the classification to cover the richness and complexity of
organic chemistry.
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Appendix A. Implementation and Training Details for the Deep Learning Models

Deep learning models have been implemented in Keras [67] running a Tensorflow
backend [30]. In the case of the standard models, MobileNetV2 [45] and VGG16 [46], the
first training was performed with transfer learning from ImageNet [68]. In order to allow
the models to specialize in AFM imaging, we have trained both models with random
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starting weights. The results presented below for the loss and accuracy metrics of these
models correspond to this second training.

Appendix A.1. Image Data Generator

In order to avoid overfitting during the training of deep learning models, an image
data augmentation is usually applied to the training set. This strategy has been employed
for the training of all the models, MobileNetV2, VGG16, VAE, and our ML-AFM model.
The image data generator (IDG) applies additional random deformations (like rotations,
flip, zoom, shear, and shift) to the images in the training dataset. The application of this
technique, that adds variation to the data used for the training in the different epochs,
avoids overfitting and also provides versatility to reproduce or classify data that are quite
different from the training dataset. Figure A1 shows the results of applying the IDG to a
theoretical simulation of acridine.

Figure A1. Top-left image is a theoretical simulation of the AFM image of acridine calculated with
the approximate version of the FDBM model implemented in the latest release of the PPM. The
remaining images are examples of random deformations of this theoretical AFM image generated by
the image data generator (IDG). These deformations can include rotations, flip, zoom, shear, and shift
of the image, or a combination of them. The selection of the deformation parameters is randomized
for each theoretical image at each training epoch in order to add variation to the data used for the
training and avoid overfitting.

We have tested several combinations of parameters for the IDG. All of them are useless
in the MobileNetV2 and VGG16 cases but very effective in improving the results with both
ML-AFM and the VAE. The best performing combination of parameters carried out in this
work corresponds to the random choice of values in ranges of [−180,180] degree rotations,
both horizontal and vertical flip, [−20,20]% for zoom, shear, and both width and height shift.
When necessary, nearest filling has been applied for the points outside of the boundaries of
the input. In this work, we have shown that, with the right choice of parameters for these
deformations, ML-AFM obtains high accuracy in test with experimental images and that
VAE is able to learn characteristic features from the experimental images that are absent
from the theoretical simulations.

To check that the classification results are not a statistical fluke, we have performed
three training runs of each model applying the IDG, randomly initializing the weights in
all of them, and obtaining similar results in each test.
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Appendix A.2. MobileNetV2

Figure A2 shows the loss and accuracy metrics during the training of MobileNetV2
with halved filters. The training loss function has an extremely fast decrease in the first
epochs reaching the value 10−2 at epoch 17, and decreasing smoothly from this point until
almost reaching zero. In parallel, the accuracy metric has an extremely high growth in the
firsts epochs, achieving an accuracy of 0.99 at epoch 17 in the test suite. From this epoch
onwards, the training loss function decreases but the test accuracy does not improve, a
clear indication that we should not train MobileNetV2 for more than 17 epochs. The graphs
indicate that the model can still learn but also that it has reached maximum accuracy. These
results show that the SPMTH-60 dataset is not complex enough to adjust the excessive
amount of parameters of MobileNetV2 for this issue. If we also consider the fact that it fails
dramatically in the test carried out with the experimental images (see Table 1), we deduce
that the model does not perform a proper classification.

(a) MobileNetV2 accuracy (b) MobileNetV2 Loss

Figure A2. Loss and accuracy metrics of the MobileNetV2 model (with halved filters in each layer) during the training. The
metrics of the data with which the model is fitted (training) are shown in orange while the blue graph shows the plots of the
validation set, used as a guide to adjust the hyperparameters of the model. The metrics indicate that the model achieves
high accuracy in that is too complex for our training dataset, leading it to overfitting.

Appendix A.3. VGG16

Figure A3 shows the loss and accuracy metrics of VGG16 during the training. To
understand why the value of the validation metrics is better than the training metrics, it
should be noted that an IDG (see Figure A1) has been applied to the training set during the
fitting process, making the data more complex and, consequently, more difficult to classify.

(a) VGG16 accuracy (b) VGG16 Loss

Figure A3. Performance of the loss and accuracy metrics of the training (orange) and validation (blue) data during the
training of the VGG16 model. The values of the metrics are suitable, however in the main text we have seen that the model
does not generalize to experimental images, which indicates that loss and accuracy metrics during training often cannot be
taken as the only method of evaluating a model.
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The loss function metrics show that the model continues improving its learning up
to epoch 60, while the accuracy metric shows an improvement up to this epoch. These
metrics also show that the accuracy of the model is almost unbeatable at epoch 60, so we
stop the training at that point, where it seems that the model is ready to perform an AFM
classification. However, as explained in the main text, the model has the ability to learn
more details, i.e., the data with which we have fed the model during the training have not
been sufficiently varied for the model to update all its layers in the classification. This leads
to a specialization of the model on theoretical images and, consequently, to poor results in
the classification of AFM experimental images (See Table 1).

In order to visualize the transition of information between different layers, we show
different kernels and activations of the VGG16 model on AFM images of benzene and
anthracene. Figure A4 shows how the first convolutional layers “let through" almost all
information while the information that reaches the deeper layers is so encoded that it
is only readable by the model. It should be noted that the information in Figure A4 is
not strictly sequential, i.e., the input of each convolutional layer is the output of each of
the filters of the previous layers (from tens to hundreds). In order to reflect the data in a
readable table we have selected a single filter from each convolutional layer and a single
output for the selected filter.

(a) Kernels and Low-Level Features of VGG16

(b) Kernels and High-Level Features of VGG16

Figure A4. Kernels of VGG16 and the respective activations of the AFM images of anthracene and
benzene molecules. From left to right the activations represent features from lowest to highest level.
The activations show the matches of the kernels with the input image of the respective layer, which is
the information that “passes through” that filter to the next layer. The filters are not more complex in
deeper layers, reflecting that the features are of a higher level when the image has been processed by
more layers.
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Appendix A.4. Our ML–AFM Model

The analysis of standard models has indicated that the difficulty of classifying experi-
mental AFM images by training a model with theoretical simulations lies in designing a
model that has an optimal depth to be able to generalize. The development of the ML–AFM
architecture is inspired by this idea, with the goal of giving it , at the same time, sufficient
depth, and enough regularization to avoid overfitting. As discussed in the main text, when
properly trained, ML-AFM is able to obtain a remarkable accuracy in the test with both
theoretical and experimental images.

Table A1 shows the details of each layer of the ML-AFM model depicted graphically
in Figure 5. To prevent the scenario that leads standard models to misclassify, ML-AFM has
been developed with different depths of convolutional layers, ensuring that the gradient
value of the backpropagation is non-zero when it reaches the first layers. With a similar
aim, the model has been developed with different regularization techniques, such as
dropout layers [41] or kernel regularizers in several convolutional layers (See Table A1 and
Figure 5).

Table A1. Each line represents a layer of the model graphically represented in Figure 5. From left to right we have
represented by columns the input dimensions, the type of layer, the kernel size, the output channels, the stride length of the
convolution and pool layers, the L2 kernel regularizer, the activation function and the connections with previous layers.
The following list of abbreviations for layer names has been applied: Convolution2D (CV), Average Pool (AvPl), Max Pool
(MxPl), Dropout (Dr), Concatenate (Conc).

Input Operator Kernel OC Stride KR-L2 Act Connected to

Block 1

2242 × 1 Input - 1 - - - -
2242 × 1 AvPl111 (2, 2) 1 (1, 1) - - Input
2242 × 1 CV121 (3, 3) 31 (2, 2) - ReLU Input
1122 × 32 Conc1 - 32 - - - AvPl111,CV121

Block 2

1122 × 32 Dr2 0.2 32 - - - Conc1
1122 × 32 CV2 (3, 3) 32 (1, 1) - ReLU Dr2
1122 × 32 MxPl211 (2, 2) 32 (1, 1) - - CV2
1122 × 32 CV221 (3, 3) 32 (2, 2) 0.01 ReLU CV2
562 × 64 Conc2 - 64 - - - MxPl211, CV221

Block 3

562 × 64 Dr3 0.2 64 - - - Conc2
562 × 64 CV311 (1, 1) 64 (1, 1) 0.01 ReLU Dr3
562 × 64 CV312 (7, 1) 64 (1, 1) 0.02 ReLU CV311
542 × 64 CV313 (1, 7) 64 (1, 1) - ReLU CV312
562 × 64 CV314 (3, 3) 64 (1, 1) - ReLU CV313
562 × 64 CV321 (3, 3) 64 (1, 1) 0.01 ReLU Dr3
542 × 64 CV322 (3, 3) 64 (1, 1) - - CV321
542 × 128 Conc3 - 128 - - - CV322,CV314

Block 4

542 × 128 Dr4 0.2 128 - - - Conc3
542 × 128 CV4 (3, 3) 128 (2, 2) - ReLU Dr4
272 × 128 AvPl4 (3, 3) 128 (2, 2) - - CV4
142 × 128 CV411 (1, 1) 128 (1, 1) 0.01 ReLU AvPl4
142 × 128 CV412 (3, 3) 128 (1, 1) 0.01 ReLU CV411
142 × 128 CV413 (3, 3) 128 (2, 2) ReLU CV412
142 × 128 CV421 (1, 1) 128 (1, 1) 0.01 ReLU AvPl4
142 × 128 CV422 (3, 3) 128 (2, 2) - - CV421
72 × 256 Conc4 - 256 - - - CV413, CV422

Block 5

72 × 256 CV5 (3, 3) 256 (2, 2) - ReLU Conc4
32 × 256 Dr5 0.2 256 - - - CV5
32 × 256 Flatten - 2304 - - - Dr5

2304 FC - 60 - - Softmax Flatten
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On the other hand, ML-AFM requires sufficient capacity to detect the different char-
acteristics of each AFM image. This can be achieved with depth. Based on the analysis
developed for VGG16 filters (Figure 4), we deduce that at least nine (and a maximum of
12) convolutional layers have been updated during the training. Therefore, we implement
different model paths with these depths (Table A1). Each convolutional layer contains sev-
eral kernels that are specialized in the detection of a particular feature. Since the problem
we are dealing with is a grayscale image classification, AFM-model has few filters in each
convolutional layer (Table A1) comparing it with other models that have been developed
to perform three-channel image classification.

The effects of developing a specific model for SPMTH-60 are shown in Figure A5,
where, compared to the metrics of the other two models, ML-AFM has greater difficulty in
learning. This may seem a departure from our goal, but actually reflects that the model
is not specializing too much in the training data and is going to be able to generalize, for
example, to include the novel features appearing in the experimental images. The results
of Table 1 confirm this idea: while VGG16 and MobileNetV2 provide essentially random
results, ML-AFM is able to perform a reasonable classification, even when trained only
with theoretical images.

(a) ML-AFM accuracy (b) ML-AFM Loss

Figure A5. Loss and accuracy metrics of the ML-AFM model during training. The evaluation on the training data is shown
in orange while the validation data are represented by the blue graph. The accuracy on validation data is better than
on training data because the IDG is applied only to the training set. It should be noted that the effort made to prevent
overfitting is reflected in the fact that the accuracy loss function has a slower growth than in the VGG16 and MobileNetV2
trainings. As a consequence, the model needs more epochs to adjust its weights but the training does not result in a too
specialized model that is able to generalize.

Appendix A.5. Variational Autoencoder

We have developed our VAE as a multilayer perceptron (MLP) with a latent space of
dimension 3. The encoder network is composed by a flatten input layer with 50,176 units
followed by five hidden fully connected layers with 4096, 1024, 256, 64, and 8 units each
one. At this point the architecture is divided into two branches, both of them composed by
a fully connected layer with 3 units each one, that are applied as mean and variance of a
normal distribution in latent space as in the standard VAE [48]. The decoder is composed
by six fully connected layers with 8, 64, 256, 1024, 4096, and 50,176 units, respectively,
activated with ReLU [69] function except the last one that is activated with a sigmoid
function. The VAE has been trained applying the IDG (Appendix A.1) to each input and
applied Nadam [70] optimizer with keras default parameters.
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