Condensed Matter Physics

F. M. Marchetti R. Sanchez

Professors


Francesca Maria Marchetti
Tel. 91 497 5590
e-mail: francesca.marchetti (at) uam.es

Departamento de Fisica Teorica de la Materia Condensada
6th floor
office 606






Rafael Sanchez
Tel. 91 497 5806
e-mail: rafael.sanchez (at) uam.es
Departamento de Fisica Teorica de la Materia Condensada
5th floor
office 505




vortices BEC
[from Alkali&Quantum Gases MIT]

image RS 1
superconducting levitation 
[from Wikimedia Commons]

image RS 2





Calendar & classroom

Additional material

Bibliography




Calendar & classroom

Classes are Monday to Thursday always at 10:30
This year ALL classes are face-to-face!! classroom 01.13.AU.405 - room 405 module 13)


                                    

JAUNARY




Mon 31
Introduction class




FEBRUARY





Tue 1
RS Lecture 1
Wed 2
RS Lecture 2
Thu 3
RS Problem 1

Mon 7
RS Lecture 3
Tue 8
RS Lecture 4
Wed 9
RS Lecture 5
Thu 10
RS Problem 2

Mon 14
RS Lecture 6
Tue 15
RS Lecture 7
Wed 16
RS Lecture 8
Thu 17
RS Problem 3

Mon 21
RS Lecture 9
Tue 22
RS Lecture 10
Wed 23
RS Lecture 11
Thu 24
RS Problem 4

Mon 28
RS Lecture 12




MARCH




Tue 1
RS Lecture 13
Wed 2
RS Lecture 14
Thu 3
RS Problem 5

Mon 7
RS Lecture 15
Tue 8
RS Lecture 16
Wed 9
RS Lecture 17
Thu 10
RS Problem 6

Mon 14
RS Lecture 18
Tue 15
RS Lecture 19
Wed 16
RS Lecture 20
Thu 17
FMM Lecture 1

Mon 21
FMM Lecture 2
Tue 22
FMM Lecture 3
Wed 23
FMM Lecture 4
Thu 24
FMM Problem 1

Mon 28
FMM Lecture 5
Tue 29
FMM Lecture 6
Wed 30
FMM Lecture 7
Thu 31
FMM Problem 2

APRIL




Mon 4
FMM Lecture 8
Tue 5
FMM Lecture 9
Wed 6
FMM Lecture 10
Thu 8
FMM Problem 3

Mon 11
Tue 12
Wed 13
Thu 14

Mon 18

Tue 19
FMM Lecture 11
Wed 20
FMM Lecture 12
Thu 21
FMM Problem 4

Mon 25
FMM Lecture 13
Tue 26
FMM Lecture 14
Wed 27
FMM Lecture 15

Thu 28
FMM Problem 5

MAY




Mon 2
Tue 3
FMM Lecture 16
Wed 4
FMM Lecture 17
Thu 5
FMM Problem 6

Mon 9
FMM Lecture 18
Tue 10
FMM Lecture 19
Wed 11
FMM Lecture 20
Thu 12
FMM Problem 7

Mon 16
Tutorials

Tue 17
Tutorials
Wed 18
Tutorials
Thu 19
Presentations
Fri 20
Presentations
Mon 23
Tue 24
Wed 25
Thu 26

Mon 30
Exam (ordinary)

Tue 31


JUNE






Wed 22
Exam (extraord)



Material complem.


Part I (RS):

Lecture 1
Lecture 2&3&4
Lecture 5

Lecture 6&7
Lecture 8&9
&10
Lecture 11&
12&13
Lecture 14&15&16
Lecture 17&18

Lecture 19
Lecture 20

Lecture 21

Problem set 1
Problem set 2
Problem set 3
Problem set 4
Problem set 5 



Part II (FMM):

Lecture 1
Lecture 2&3&4
Lecture 5
Lecture 6&7
Lecture 8&9&10
Lecture 11&12&13
Lecture 14&15&16
Lecture 17&18
Lecture 19
Lecture 20
Lecture 21

Problem set 1
Problem set 2
Problem set 3
Problem set 4
Problem set 5 

VOLVER ARRIBA





































































VOLVER ARRIBA


























N.B. The supplementary materials underlined in yellow are (advanced) research articles among which you can choose one or two articles for the 15 minute presentation (+ 5 minute discussion) at the end of the course. **Presentations are an essential part of the evaluation**

Part I: Many electron systems, quantum properties


Lectures 1& 2&3
Mathematical tools:
Second quantization formalism
Wick's theorem


Lectures 4&5&6
Review on non-interacting electron gases
Electrons in a potential. The jellium model
Perturbation theory
 
Problem set 1

Lectures 7-11
Coulomb interactions. Mean field approximations
Hartree-Fock approximation
Screening


Problem set 2
Lecture 12&13&14

Tight-binding models.
Graphene.
Hubbard model
Phase transitions

Problem set 3
  • T. Ihn, Semiconductor nanostructures (Oxford Univ. Press, 2013).

Lectures 15
Fermi liquid theory


  • L. D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3, 920 (1957).



Building the quantum world


Lectures 16-18
Low dimensional systems:
2D electron gas
Quantum wires
Quantum dots
Quantum Hall effect and topology. Majorana fermions.


Problem set 4
  • K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980).

Wigner cristals.

Lectures 19&20
Open quantum systems.
Master equations.
Single-electron transport.
Coulomb blockade.
Qubits

Problem set 5
  •  L. P. Kouwenhoven et al., Electron transport in quantum dots, in Mesoscopic Electron Transport,  ed L. L. Sohn, G. Schoen and L. P. Kouwenhoven (Kluwer Series E vol 345) (June 1996) p 105 - 214
  • W. G. van der Wiel et al., Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1 (2003).
  •  R. Hanson et al., Spins in few-electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007).
  • Y. V. Nazarov, Y. M.Blanter, Quantum transport: Introduction to nanoscience (Cambridge Univ. Press, 2009).
  • P. Barthelemy and L.M.K. Vandersypen, Quantum Dot Systems: a versatile platform
    for quantum simulations, Ann. Phys. (Berlin) 525, 808 (2013).


Lectures 20
Quantum transport.
Scattering theory.
Onsager relations.

  • G. B. Lesovik and I. A. Sadovskyy, Phys.-Usp. 54, 1007 (2011).
  • S. Datta, Quantum transport. Atom to transistor  (Cambridge Univ. Press, 2013).
  • G. Benenti et al., Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep. 694, 1 (2017).




N.B. The supplementary materials underlined in yellow are (advanced) research articles among which you can choose one or two articles for the 15 minute presentation (+ 5 minute discussion) at the end of the course. **Presentations are an essential part of the evaluation**

Part II: Collective quantum coherence of bosons and fermions


An introduction to BEC & superfluidity


N.B. For lecture notes and assignments, see this course page on Perusall
Other material can also be found in Moodle

Lecture 0
Presentation of part 1 of the course

Historical introduction to Bose-Einstein condensation (BEC) and sperfluidity

Lectures 1
Second quantisation: a reminder

The ideal Bose gas

Lectures 2&3
Bose-Einstein condensation
Gas in a 3D box
Thermodynamic limit


Lecture 4
BEC in ideal Bose gases: statistical saturation of the excited states
Harmonic trapping
Problem set 1

Solutions

* Trapped ideal gases (Tc for BEC, condensate fraction)
* Phenomenology of the ultracold gases experiments

* Measurement of energy and ground-state occupation in ultracold atomic BECs


* Deviations from Einstein's picture of an ideal saturated Bose gas


* Bose-Einstein Condensation in a Uniform potential


Lecture 5&6
One-body density matrix & off-diagonal long range order
Order parameter
Ground state & coherent states

Lecture 7&8&9&10
The weakly-interacting Bose gas
Excitation spectrum
The Bogoliubov transformation
Sound velocity
Healing length
Condensate depletion due to interactions
ODLRO for weakly interacting Bose gases
Problem set 2
* One-body density matrix in weakly interacting Bose gases
* Phase coherence properties of weakly interacting Bose gases
* Measurements of coherence & ODLRO:  from quantum optics to ultracold gases

* Measurements of the excitation spectrum of a BEC in ultracold atoms  
Lecture 11
BEC and superfluidity:
Landau criterion
Defect moving through a superfluid

GPE and inhomogeneous Bose Einstein Condensates (optional)
Problem set 3
* Landau criterion, Cherenkov waves and drag force in weakly interacting Bose condensates




Problem set 4
* Zero temperature: The time dependent Gross-Pitaevskii equation
* Conservation laws: continuity equation
Stationary solutions
* Landau free energy, order parameter, 2nd order phase transition
* Small amplitude oscillations: Bogoliubov-de Gennes equations
: Bogoliubov spectrum of excitations


* Superfluid velocity & quantisation of circulation
* Vortex line solutions (healing length), Rotation of superfluids,  Energy of a vortex solution

* Trapped condensates: Thomas-Fermi limit
*
Time of flights measurements: expansion of a BEC


* Interference between two condensates


An introduction to the BCS theory for superconductivity


* Thermal properties of fermionic ultracold gases: Fermi temperature, heat capacity

Lecture 12&13&14 
Reminder about the ideal Fermi gas
Weakly interacting Fermi gases
The one-pair Cooper problem
Cooper pairs


Lecture 15&16
BCS theory at zero temperature
Reduced Hamiltonian
BCS ground state: pair operators



* Fock states versus coherent states (number of particles and phase as conjugate variables)
Lecture 17&18&19
Mean-field approximation
Bogoliubov transformation: quasi-particles

Variational calculation
Gap and number equations

Problem set 5
Lecture 20&21
BCS theory at finite temperature (optional)
(Elements of the) BEC-BCS crossover theory (optional)


* Feshbach resonances & the BEC-BCS crossover
* BEC-BCS crossover at zero temperature: T=0 variational calculation




The final course presentations will be on Thursday the 19th of May 2021 AND Fridai the 20th of May 2021 (20 min. = 15 min. presentation, 5 min. discussion)

PART 1

Quasiparticles and interactions
Landau theory of the Fermi liquid
Dirac fermions in graphene
Klein tunneling in graphene
Topological insulators
Majorana fermions

Wigner cristals
Anderson model for impurities and the Kondo effect
Oscillations in scanning tunneling microscopy


Artificial quantum systems
C
onductance quantization in quantum point contacts
Qubits in quantum dots
Single electron transport in quantum dots
Quantum simulators
Electron optics with quantum Hall edge channels
Persistent currents in normal metal rings
Thermoelectric effect in quantum conductors
Observation of the Aharonov-Bohm effect in metal rings
Quantum interference and resonant tunneling
Entanglement of two qubits

PART 2

General
Phase transitions, spontaneous symmetry breaking and the Goldstone mode
Josephson effect in superfluids and superconductors
The concept of phase in superfluids and superconductors: interference between two condensates and Josephson effect
Flux quantisation and vortices in superconductors and superfluids

Fermions
Feshbach resonances & the BEC-BCS crossover
Polarised Fermi gases 

Bosons
Effects of interactions on Bose-Einstein condensation of an atomic gas

Deviations from Einstein's picture of an ideal saturated Bose gas

Bose-Einstein Condensation in a Uniform potential

One-body density matrix in weakly interacting Bose gases

Phenomenology of the ultracold gases experiments

Trapped ideal gases (Tc for BEC, condensate fraction)

Measurement of energy and ground-state occupation in ultracold atomic BECs

Measurements of the excitation spectrum of a BEC in ultracold atoms
Intereference between two condensates:Fock vs. coherent states
Measurements of the phase coherence properties of weakly interacting Bose gases
Measurements of coherence & ODLRO:  from quantum optics to ultracold gases
The Gross-Pitaevskii equation

Superfluid velocity & quantisation of circulation: Vortex line solutions

Landau criterion, Cherenkov waves and drag force in weakly interacting Bose condensates

Time of flights measurements: expansion of a BEC


Bibliography


VOLVER ARRIBA

  1. H. Bruus & K. Flensberg, Many-body quantum theory in condensed matter physics (Oxford Univ. Press, 2016)
  2. P. Phillips, Advanced solid state physics (Cambridge Univ. Press, 2012)
  3. C. Kittel, Introduction to solid state physics (Wiley, New York, 1961)
  4. L. Pitaevskii & S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)
  5. A. J. Leggett, Quantum Liquids --- Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford Graduate Texts Oxford, 2006)
  6. C. J. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)
  7. Bose Einstein Condensation, ed. A. Griffin, D. W. Snoke & S. Stringari (Cambridge University Press, Cambridge, 1995)
  8. K. Huang, Introduction to Statistical Physics (CRC Press, 2001)
  9. Ashcroft & Mermin, Solid State Physics
  10. P. G. de Gennes, Superconductivity of Metals and Alloys, Westview Press, Oxford (1966)
  11. M. Tinkham, Introduction to Superconductivity, Dover Publications, New York (1996)
  12. J. R. Schrieffer, Theory of Superconductivity, Westview Press, Oxford (1964)
  13. Lecture notes on Superconductivity from Alfredo Levy Yeyati




logo ifimac


Home
CV
Publications
Research Interests
Talks
Teaching Students Links